Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OKBJavaConnector/ECJClient/src/ec/app/ecsuite/ECSuite.java @ 12147

Last change on this file since 12147 was 6152, checked in by bfarka, 14 years ago

added ecj and custom statistics to communicate with the okb services #1441

File size: 8.7 KB
Line 
1/*
2  Copyright 2006 by Sean Luke and George Mason University
3  Licensed under the Academic Free License version 3.0
4  See the file "LICENSE" for more information
5*/
6
7 
8package ec.app.ecsuite;
9
10import ec.util.*;
11import ec.*;
12import ec.simple.*;
13import ec.vector.*;
14
15/*
16 * ECSuite.java
17 *
18 * Created: Thu MAr 22 16:27:15 2001
19 * By: Liviu Panait and Sean Luke
20 */
21
22/*
23 * @author Liviu Panait and Sean Luke
24 * @version 1.0
25 */
26
27/**
28   Several standard Evolutionary Computation functions are implemented: Rastrigin, De Jong's test suite
29   F1-F4 problems (Sphere, Rosenbrock, Step, Noisy-Quartic), Booth (from [Schwefel, 1995]), and Griewangk.
30   As the SimpleFitness is used for maximization problems, the mapping f(x) --> -f(x) is used to transform
31   the problems into maximization ones.
32
33   <p><b>Parameters</b><br>
34   <table>
35   <tr><td valign=top><i>base</i>.<tt>type</tt><br>
36   <font size=-1>String, one of: rosenbrock rastrigin sphere step noisy-quartic kdj-f1 kdj-f2 kdj-f3 kdj-f4 booth median [or] griewangk</font>/td>
37   <td valign=top>(The vector problem to test against.  Some of the types are synonyms: kdj-f1 = sphere, kdj-f2 = rosenbrock, kdj-f3 = step, kdj-f4 = noisy-quartic.  "kdj" stands for "Ken DeJong", and the numbers are the problems in his test suite)</td></tr>
38   </table>
39
40
41*/
42 
43public class ECSuite extends Problem implements SimpleProblemForm
44    {
45    public static final String P_WHICH_PROBLEM = "type";
46       
47    public static final String V_ROSENBROCK = "rosenbrock";
48    public static final String V_RASTRIGIN = "rastrigin";
49    public static final String V_SPHERE = "sphere";
50    public static final String V_STEP = "step";
51    public static final String V_NOISY_QUARTIC = "noisy-quartic";
52    public static final String V_F1 = "kdj-f1";
53    public static final String V_F2 = "kdj-f2";
54    public static final String V_F3 = "kdj-f3";
55    public static final String V_F4 = "kdj-f4";
56    public static final String V_BOOTH = "booth";
57    public static final String V_GRIEWANGK = "griewangk";
58    public static final String V_MEDIAN = "median";
59
60    public static final int PROB_ROSENBROCK = 0;
61    public static final int PROB_RASTRIGIN = 1;
62    public static final int PROB_SPHERE = 2;
63    public static final int PROB_STEP = 3;
64    public static final int PROB_NOISY_QUARTIC = 4;
65    public static final int PROB_BOOTH = 5;
66    public static final int PROB_GRIEWANGK = 6;
67    public static final int PROB_MEDIAN = 7;
68   
69    public int problemType = PROB_ROSENBROCK;  // defaults on Rosenbrock
70
71    // for RASTRIGIN function
72    public final static float A = 10.0f;
73
74    // nothing....
75    public void setup(final EvolutionState state, final Parameter base)
76        {
77        super.setup(state, base);
78        String wp = state.parameters.getStringWithDefault( base.push( P_WHICH_PROBLEM ), null, "" );
79        if( wp.compareTo( V_ROSENBROCK ) == 0 || wp.compareTo (V_F2)==0 )
80            problemType = PROB_ROSENBROCK;
81        else if ( wp.compareTo( V_RASTRIGIN ) == 0 )
82            problemType = PROB_RASTRIGIN;
83        else if ( wp.compareTo( V_SPHERE ) == 0 || wp.compareTo (V_F1)==0)
84            problemType = PROB_SPHERE;
85        else if ( wp.compareTo( V_STEP ) == 0 || wp.compareTo (V_F3)==0)
86            problemType = PROB_STEP;
87        else if ( wp.compareTo( V_NOISY_QUARTIC ) == 0 || wp.compareTo (V_F4)==0)
88            problemType = PROB_NOISY_QUARTIC;
89        else if( wp.compareTo( V_BOOTH ) == 0 )
90            problemType = PROB_BOOTH;
91        else if( wp.compareTo( V_GRIEWANGK ) == 0 )
92            problemType = PROB_GRIEWANGK;           
93        else if( wp.compareTo( V_MEDIAN ) == 0 )
94            problemType = PROB_MEDIAN;           
95        else state.output.fatal(
96            "Invalid value for parameter, or parameter not found.\n" +
97            "Acceptable values are:\n" +
98            "  " + V_ROSENBROCK + "(or " + V_F2 + ")\n" +
99            "  " + V_RASTRIGIN + "\n" +
100            "  " + V_SPHERE + "(or " + V_F1 + ")\n" +
101            "  " + V_STEP + "(or " + V_F3 + ")\n" +
102            "  " + V_NOISY_QUARTIC + "(or " + V_F4 + ")\n"+
103            "  " + V_BOOTH + "\n" +
104            "  " + V_GRIEWANGK + "\n" +
105            "  " + V_MEDIAN + "\n",
106            base.push( P_WHICH_PROBLEM ) );
107        }
108
109    public void evaluate(final EvolutionState state,
110        final Individual ind,
111        final int subpopulation,
112        final int threadnum)
113        {
114        if( !( ind instanceof DoubleVectorIndividual ) )
115            state.output.fatal( "The individuals for this problem should be DoubleVectorIndividuals." );
116
117        DoubleVectorIndividual temp = (DoubleVectorIndividual)ind;
118        double[] genome = temp.genome;
119        int len = genome.length;
120
121        // this curious break-out makes it easy to use the isOptimal() and function() methods
122        // for other purposes, such as coevolutionary versions of this class.
123               
124        // compute the fitness on a per-function basis
125        double fit = (function(state, problemType, temp.genome, threadnum));
126               
127        // compute if we're optimal on a per-function basis
128        boolean isOptimal = isOptimal(problemType, fit);
129               
130        // set the fitness appropriately
131        ((SimpleFitness)(ind.fitness)).setFitness( state, (float)fit, isOptimal );
132        ind.evaluated = true;
133        }
134       
135       
136    public boolean isOptimal(int function, double fitness)
137        {
138        switch(problemType)
139            {
140            case PROB_ROSENBROCK:
141            case PROB_RASTRIGIN:
142            case PROB_SPHERE:
143            case PROB_STEP:
144                return fitness == 0.0f;
145
146            case PROB_NOISY_QUARTIC:
147            case PROB_BOOTH:
148            case PROB_GRIEWANGK:
149            case PROB_MEDIAN:
150            default:
151                return false;
152            }
153        }
154
155    public double function(EvolutionState state, int function, double[] genome, int threadnum)
156        {
157        double value = 0;
158        int len = genome.length;
159        switch(function)
160            {
161            case PROB_ROSENBROCK:
162                for( int i = 1 ; i < len ; i++ )
163                    value += 100*(genome[i-1]*genome[i-1]-genome[i])*
164                        (genome[i-1]*genome[i-1]-genome[i]) +
165                        (1-genome[i-1])*(1-genome[i-1]);
166                return -value;
167
168               
169            case PROB_RASTRIGIN:
170                value = len * A;
171                for( int i = 0 ; i < len ; i++ )
172                    value += ( genome[i]*genome[i] - A * Math.cos( 2 * Math.PI * genome[i] ) );
173                return -value;
174
175               
176            case PROB_SPHERE:
177                for( int i = 0 ; i < len ; i++ )
178                    value += genome[i]*genome[i];
179                return -value;
180
181
182            case PROB_STEP:
183                for( int i = 0 ; i < len ; i++ )
184                    value += 6 + Math.floor( genome[i] );
185                return -value;
186
187
188            case PROB_NOISY_QUARTIC:
189                for( int i = 0 ; i < len ; i++ )
190                    value += (i+1)*(genome[i]*genome[i]*genome[i]*genome[i]) + // no longer : Math.pow( genome[i], 4 ) +
191                        state.random[threadnum].nextDouble();
192                return -value;
193
194
195            case PROB_BOOTH:
196                if( len != 2 )
197                    state.output.fatal( "The Booth problem is defined for only two terms, and as a consequence the genome of the DoubleVectorIndividual should have size 2." );
198                value = (genome[0] + 2*genome[1] - 7) * (genome[0] + 2*genome[1] - 7) +
199                    (2*genome[0] + genome[1] - 5) * (2*genome[0] + genome[1] - 5);
200                return -value;
201
202
203            case PROB_GRIEWANGK:
204                value = 1;
205                double prod = 1;
206                for( int i = 0 ; i < len ; i++ )
207                    {
208                    value += (genome[i]*genome[i])/4000.0;
209                    prod *= Math.cos( genome[i] / Math.sqrt(i+1) );
210                    }
211                value -= prod;
212                return -value;
213
214
215            case PROB_MEDIAN:           // FIXME, need to do a better median-finding algorithm, such as http://www.ics.uci.edu/~eppstein/161/960130.html
216                double[] sorted = new double[genome.length];
217                System.arraycopy(genome, 0, sorted, 0, sorted.length);
218                ec.util.QuickSort.qsort(sorted);
219                return sorted[sorted.length / 2];               // note positive
220
221            default:
222                state.output.fatal( "ec.app.ecsuite.ECSuite has an invalid problem -- how on earth did that happen?" );
223                return 0;  // never happens
224            }
225        }
226    }
Note: See TracBrowser for help on using the repository browser.