[8412] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Algorithms.NCA {
|
---|
| 29 | public class NeighborhoodComponentsAnalysis {
|
---|
| 30 |
|
---|
[8425] | 31 | public static INCAModel Train(IClassificationProblemData data, int k, int reduceDimensions, INCAInitializer initializer) {
|
---|
[8412] | 32 | var instances = data.TrainingIndices.Count();
|
---|
| 33 | var attributes = data.AllowedInputVariables.Count();
|
---|
[8422] | 34 |
|
---|
[8425] | 35 | double[] matrix = initializer.Initialize(data, reduceDimensions);
|
---|
[8422] | 36 |
|
---|
[8412] | 37 | alglib.mincgstate state;
|
---|
| 38 | alglib.mincgreport rep;
|
---|
| 39 |
|
---|
| 40 | // first run
|
---|
| 41 | alglib.mincgcreate(matrix, out state);
|
---|
| 42 | alglib.mincgsetcond(state, 0.0000000001, 0, 0, 0);
|
---|
| 43 | alglib.mincgoptimize(state, Gradient, null, new OptimizationInfo(data, reduceDimensions));
|
---|
| 44 | alglib.mincgresults(state, out matrix, out rep);
|
---|
| 45 |
|
---|
| 46 | var transformationMatrix = new double[attributes, reduceDimensions];
|
---|
[8425] | 47 | var counter = 0;
|
---|
[8412] | 48 | for (var i = 0; i < attributes; i++)
|
---|
| 49 | for (var j = 0; j < reduceDimensions; j++)
|
---|
[8420] | 50 | transformationMatrix[i, j] = matrix[counter++];
|
---|
[8412] | 51 |
|
---|
| 52 | var transformedTrainingset = new double[instances, reduceDimensions];
|
---|
| 53 | var rowCount = 0;
|
---|
[8420] | 54 | foreach (var r in data.TrainingIndices) {
|
---|
[8422] | 55 | var i = 0;
|
---|
[8412] | 56 | foreach (var v in data.AllowedInputVariables) {
|
---|
| 57 | var val = data.Dataset.GetDoubleValue(v, r);
|
---|
[8422] | 58 | for (var j = 0; j < reduceDimensions; j++)
|
---|
| 59 | transformedTrainingset[rowCount, j] += val * transformationMatrix[i, j];
|
---|
| 60 | i++;
|
---|
[8412] | 61 | }
|
---|
| 62 | rowCount++;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | return new NCAModel(transformedTrainingset, transformationMatrix, k, data.TargetVariable, data.AllowedInputVariables,
|
---|
| 66 | data.Dataset.GetDoubleValues(data.TargetVariable)
|
---|
| 67 | .Select((v, i) => new { I = i, V = v })
|
---|
| 68 | .Where(x => x.I >= data.TrainingPartition.Start && x.I < data.TrainingPartition.End
|
---|
| 69 | && !(x.I >= data.TestPartition.Start && x.I < data.TestPartition.End))
|
---|
| 70 | .Select(x => x.V).ToArray());
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | private static void Gradient(double[] A, ref double func, double[] grad, object obj) {
|
---|
| 74 | var info = (OptimizationInfo)obj;
|
---|
| 75 | var instances = info.ProblemData.TrainingIndices.ToArray();
|
---|
[8422] | 76 | var attributes = info.ProblemData.AllowedInputVariables.Count();
|
---|
[8420] | 77 | var AMatrix = new Matrix(A, A.Length / info.ReduceDimensions, info.ReduceDimensions);
|
---|
| 78 |
|
---|
[8422] | 79 | alglib.sparsematrix probabilities;
|
---|
| 80 | alglib.sparsecreate(instances.Length, instances.Length, out probabilities);
|
---|
| 81 | var distances = new double[instances.Length];
|
---|
[8412] | 82 | for (int i = 0; i < instances.Length - 1; i++) {
|
---|
[8420] | 83 | var iVector = new Matrix(GetRow(info.ProblemData, instances[i]));
|
---|
[8412] | 84 | var denom = 0.0;
|
---|
| 85 | for (int k = 0; k < instances.Length; k++) {
|
---|
| 86 | if (k == i) continue;
|
---|
[8422] | 87 | var kVector = new Matrix(GetRow(info.ProblemData, instances[k]));
|
---|
| 88 | distances[k] = iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).Length();
|
---|
| 89 | denom += Math.Exp(-(distances[k] * distances[k]));
|
---|
[8412] | 90 | }
|
---|
[8420] | 91 | if (denom > 0) {
|
---|
[8422] | 92 | for (int j = i + 1; j < instances.Length; j++) {
|
---|
[8420] | 93 | if (i == j) continue;
|
---|
[8422] | 94 | var v = Math.Exp(-(distances[j] * distances[j])) / denom;
|
---|
[8420] | 95 | alglib.sparseset(probabilities, i, j, v);
|
---|
[8422] | 96 | alglib.sparseset(probabilities, j, i, v);
|
---|
[8420] | 97 | }
|
---|
[8412] | 98 | }
|
---|
| 99 | }
|
---|
[8422] | 100 | alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
|
---|
[8412] | 101 |
|
---|
[8420] | 102 | int t0 = 0, t1 = 0, r, c;
|
---|
| 103 | double val;
|
---|
| 104 | var classes = info.ProblemData.Dataset.GetDoubleValues(info.ProblemData.TargetVariable, instances).ToArray();
|
---|
[8412] | 105 | var pi = new double[instances.Length];
|
---|
[8420] | 106 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
| 107 | if (classes[r].IsAlmost(classes[c]))
|
---|
| 108 | pi[r] += val;
|
---|
[8412] | 109 | }
|
---|
| 110 |
|
---|
[8422] | 111 | var innerSum = new double[attributes, attributes];
|
---|
| 112 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
| 113 | var vector = new Matrix(GetRow(info.ProblemData, instances[r])).Subtract(new Matrix(GetRow(info.ProblemData, instances[c]))).Apply();
|
---|
| 114 | vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
|
---|
[8412] | 115 |
|
---|
[8420] | 116 | if (classes[r].IsAlmost(classes[c])) {
|
---|
[8422] | 117 | vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
|
---|
[8412] | 118 | }
|
---|
| 119 | }
|
---|
[8422] | 120 |
|
---|
| 121 | func = -pi.Sum();
|
---|
| 122 |
|
---|
| 123 | grad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose().ToArray();
|
---|
[8412] | 124 | }
|
---|
| 125 |
|
---|
| 126 | private static IEnumerable<double> GetRow(IClassificationProblemData data, int row) {
|
---|
| 127 | return data.AllowedInputVariables.Select(v => data.Dataset.GetDoubleValue(v, row));
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[8425] | 130 | public static NCAClassificationSolution CreateNCASolution(IClassificationProblemData problemData, int k, int reduceDimensions, INCAInitializer initializer) {
|
---|
| 131 | return new NCAClassificationSolution(problemData, Train(problemData, k, reduceDimensions, initializer));
|
---|
[8412] | 132 | }
|
---|
| 133 |
|
---|
| 134 | private class OptimizationInfo {
|
---|
| 135 | public IClassificationProblemData ProblemData { get; set; }
|
---|
| 136 | public int ReduceDimensions { get; set; }
|
---|
| 137 | public OptimizationInfo(IClassificationProblemData problem, int reduceDimensions) {
|
---|
| 138 | this.ProblemData = problem;
|
---|
| 139 | this.ReduceDimensions = reduceDimensions;
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|