1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.NCA {
|
---|
31 | [Item("NCAModel", "")]
|
---|
32 | [StorableClass]
|
---|
33 | public class NCAModel : NamedItem, INCAModel {
|
---|
34 |
|
---|
35 | [Storable]
|
---|
36 | private string targetVariable;
|
---|
37 | [Storable]
|
---|
38 | private string[] allowedInputVariables;
|
---|
39 | [Storable]
|
---|
40 | private double[] classValues;
|
---|
41 | /// <summary>
|
---|
42 | /// Get a clone of the class values
|
---|
43 | /// </summary>
|
---|
44 | public double[] ClassValues {
|
---|
45 | get { return (double[])classValues.Clone(); }
|
---|
46 | }
|
---|
47 | [Storable]
|
---|
48 | private int k;
|
---|
49 | [Storable]
|
---|
50 | private double[,] transformationMatrix;
|
---|
51 | /// <summary>
|
---|
52 | /// Get a clone of the transformation matrix
|
---|
53 | /// </summary>
|
---|
54 | public double[,] TransformationMatrix {
|
---|
55 | get { return (double[,])transformationMatrix.Clone(); }
|
---|
56 | }
|
---|
57 | [Storable]
|
---|
58 | private double[,] transformedTrainingset;
|
---|
59 | /// <summary>
|
---|
60 | /// Get a clone of the transformed trainingset
|
---|
61 | /// </summary>
|
---|
62 | public double[,] TransformedTrainingset {
|
---|
63 | get { return (double[,])transformedTrainingset.Clone(); }
|
---|
64 | }
|
---|
65 |
|
---|
66 | [StorableConstructor]
|
---|
67 | protected NCAModel(bool deserializing) : base(deserializing) { }
|
---|
68 | protected NCAModel(NCAModel original, Cloner cloner)
|
---|
69 | : base(original, cloner) {
|
---|
70 | k = original.k;
|
---|
71 | targetVariable = original.targetVariable;
|
---|
72 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
73 | if (original.classValues != null)
|
---|
74 | this.classValues = (double[])original.classValues.Clone();
|
---|
75 | if (original.transformationMatrix != null)
|
---|
76 | this.transformationMatrix = (double[,])original.transformationMatrix.Clone();
|
---|
77 | if (original.transformedTrainingset != null)
|
---|
78 | this.transformedTrainingset = (double[,])original.transformedTrainingset.Clone();
|
---|
79 | }
|
---|
80 | public NCAModel(double[,] transformedTrainingset, double[,] transformationMatrix, int k, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
81 | : base() {
|
---|
82 | this.name = ItemName;
|
---|
83 | this.description = ItemDescription;
|
---|
84 | this.transformedTrainingset = transformedTrainingset;
|
---|
85 | this.transformationMatrix = transformationMatrix;
|
---|
86 | this.k = k;
|
---|
87 | this.targetVariable = targetVariable;
|
---|
88 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
89 | if (classValues != null)
|
---|
90 | this.classValues = (double[])classValues.Clone();
|
---|
91 | }
|
---|
92 |
|
---|
93 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
94 | return new NCAModel(this, cloner);
|
---|
95 | }
|
---|
96 |
|
---|
97 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
98 | int k = Math.Min(this.k, transformedTrainingset.GetLength(0));
|
---|
99 | double[] transformedRow = new double[transformationMatrix.GetLength(1)];
|
---|
100 | var kVotes = new SortedList<double, double>(k + 1);
|
---|
101 | foreach (var r in rows) {
|
---|
102 | for (int i = 0; i < transformedRow.Length; i++) transformedRow[i] = 0;
|
---|
103 | int j = 0;
|
---|
104 | foreach (var v in allowedInputVariables) {
|
---|
105 | double val = dataset.GetDoubleValue(v, r);
|
---|
106 | for (int i = 0; i < transformedRow.Length; i++)
|
---|
107 | transformedRow[i] += val * transformationMatrix[j, i];
|
---|
108 | j++;
|
---|
109 | }
|
---|
110 | kVotes.Clear();
|
---|
111 | for (int a = 0; a < transformedTrainingset.GetLength(0); a++) {
|
---|
112 | double d = 0;
|
---|
113 | for (int y = 0; y < transformedRow.Length; y++) {
|
---|
114 | d += (transformedRow[y] - transformedTrainingset[a, y]) * (transformedRow[y] - transformedTrainingset[a, y]);
|
---|
115 | }
|
---|
116 | while (kVotes.ContainsKey(d)) d += 1e-12;
|
---|
117 | if (kVotes.Count <= k || kVotes.Last().Key > d) {
|
---|
118 | kVotes.Add(d, classValues[a]);
|
---|
119 | if (kVotes.Count > k) kVotes.RemoveAt(kVotes.Count - 1);
|
---|
120 | }
|
---|
121 | }
|
---|
122 | yield return kVotes.Values.ToLookup(x => x).MaxItems(x => x.Count()).First().Key;
|
---|
123 | }
|
---|
124 | }
|
---|
125 | public NCAClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
126 | return new NCAClassificationSolution(problemData, this);
|
---|
127 | }
|
---|
128 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
129 | return CreateClassificationSolution(problemData);
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|