[8412] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[8441] | 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
[8412] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.NCA {
|
---|
| 32 | [Item("NCAModel", "")]
|
---|
| 33 | [StorableClass]
|
---|
| 34 | public class NCAModel : NamedItem, INCAModel {
|
---|
| 35 |
|
---|
| 36 | [Storable]
|
---|
| 37 | private string targetVariable;
|
---|
| 38 | [Storable]
|
---|
| 39 | private string[] allowedInputVariables;
|
---|
| 40 | [Storable]
|
---|
| 41 | private double[] classValues;
|
---|
[8420] | 42 | /// <summary>
|
---|
| 43 | /// Get a clone of the class values
|
---|
| 44 | /// </summary>
|
---|
| 45 | public double[] ClassValues {
|
---|
| 46 | get { return (double[])classValues.Clone(); }
|
---|
| 47 | }
|
---|
[8412] | 48 | [Storable]
|
---|
| 49 | private int k;
|
---|
| 50 | [Storable]
|
---|
| 51 | private double[,] transformationMatrix;
|
---|
| 52 | /// <summary>
|
---|
| 53 | /// Get a clone of the transformation matrix
|
---|
| 54 | /// </summary>
|
---|
| 55 | public double[,] TransformationMatrix {
|
---|
| 56 | get { return (double[,])transformationMatrix.Clone(); }
|
---|
| 57 | }
|
---|
| 58 | [Storable]
|
---|
| 59 | private double[,] transformedTrainingset;
|
---|
| 60 | /// <summary>
|
---|
| 61 | /// Get a clone of the transformed trainingset
|
---|
| 62 | /// </summary>
|
---|
| 63 | public double[,] TransformedTrainingset {
|
---|
| 64 | get { return (double[,])transformedTrainingset.Clone(); }
|
---|
| 65 | }
|
---|
[8441] | 66 | [Storable]
|
---|
| 67 | private Scaling scaling;
|
---|
[8412] | 68 |
|
---|
| 69 | [StorableConstructor]
|
---|
| 70 | protected NCAModel(bool deserializing) : base(deserializing) { }
|
---|
| 71 | protected NCAModel(NCAModel original, Cloner cloner)
|
---|
| 72 | : base(original, cloner) {
|
---|
| 73 | k = original.k;
|
---|
| 74 | targetVariable = original.targetVariable;
|
---|
| 75 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 76 | if (original.classValues != null)
|
---|
| 77 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 78 | if (original.transformationMatrix != null)
|
---|
| 79 | this.transformationMatrix = (double[,])original.transformationMatrix.Clone();
|
---|
| 80 | if (original.transformedTrainingset != null)
|
---|
| 81 | this.transformedTrainingset = (double[,])original.transformedTrainingset.Clone();
|
---|
[8441] | 82 | this.scaling = cloner.Clone(original.scaling);
|
---|
[8412] | 83 | }
|
---|
[8441] | 84 | public NCAModel(double[,] transformedTrainingset, Scaling scaling, double[,] transformationMatrix, int k, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
[8412] | 85 | : base() {
|
---|
| 86 | this.name = ItemName;
|
---|
| 87 | this.description = ItemDescription;
|
---|
| 88 | this.transformedTrainingset = transformedTrainingset;
|
---|
[8441] | 89 | this.scaling = scaling;
|
---|
[8412] | 90 | this.transformationMatrix = transformationMatrix;
|
---|
| 91 | this.k = k;
|
---|
| 92 | this.targetVariable = targetVariable;
|
---|
| 93 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 94 | if (classValues != null)
|
---|
| 95 | this.classValues = (double[])classValues.Clone();
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 99 | return new NCAModel(this, cloner);
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
[8441] | 103 | var k = Math.Min(this.k, transformedTrainingset.GetLength(0));
|
---|
| 104 | var transformedRow = new double[transformationMatrix.GetLength(1)];
|
---|
[8412] | 105 | var kVotes = new SortedList<double, double>(k + 1);
|
---|
| 106 | foreach (var r in rows) {
|
---|
| 107 | for (int i = 0; i < transformedRow.Length; i++) transformedRow[i] = 0;
|
---|
| 108 | int j = 0;
|
---|
| 109 | foreach (var v in allowedInputVariables) {
|
---|
[8441] | 110 | var values = scaling.GetScaledValues(dataset, v, rows);
|
---|
[8412] | 111 | double val = dataset.GetDoubleValue(v, r);
|
---|
| 112 | for (int i = 0; i < transformedRow.Length; i++)
|
---|
| 113 | transformedRow[i] += val * transformationMatrix[j, i];
|
---|
| 114 | j++;
|
---|
| 115 | }
|
---|
| 116 | kVotes.Clear();
|
---|
| 117 | for (int a = 0; a < transformedTrainingset.GetLength(0); a++) {
|
---|
| 118 | double d = 0;
|
---|
| 119 | for (int y = 0; y < transformedRow.Length; y++) {
|
---|
| 120 | d += (transformedRow[y] - transformedTrainingset[a, y]) * (transformedRow[y] - transformedTrainingset[a, y]);
|
---|
| 121 | }
|
---|
| 122 | while (kVotes.ContainsKey(d)) d += 1e-12;
|
---|
| 123 | if (kVotes.Count <= k || kVotes.Last().Key > d) {
|
---|
| 124 | kVotes.Add(d, classValues[a]);
|
---|
| 125 | if (kVotes.Count > k) kVotes.RemoveAt(kVotes.Count - 1);
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | yield return kVotes.Values.ToLookup(x => x).MaxItems(x => x.Count()).First().Key;
|
---|
| 129 | }
|
---|
| 130 | }
|
---|
| 131 | public NCAClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 132 | return new NCAClassificationSolution(problemData, this);
|
---|
| 133 | }
|
---|
| 134 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 135 | return CreateClassificationSolution(problemData);
|
---|
| 136 | }
|
---|
[8437] | 137 |
|
---|
| 138 | public double[,] Reduce(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 139 | var result = new double[rows.Count(), transformationMatrix.GetLength(1)];
|
---|
| 140 | int v = 0;
|
---|
| 141 | foreach (var r in rows) {
|
---|
| 142 | int i = 0;
|
---|
| 143 | foreach (var variable in allowedInputVariables) {
|
---|
| 144 | double val = dataset.GetDoubleValue(variable, r);
|
---|
| 145 | for (int j = 0; j < result.GetLength(1); j++)
|
---|
| 146 | result[v, j] += val * transformationMatrix[i, j];
|
---|
| 147 | i++;
|
---|
| 148 | }
|
---|
| 149 | v++;
|
---|
| 150 | }
|
---|
| 151 | return result;
|
---|
| 152 | }
|
---|
[8412] | 153 | }
|
---|
| 154 | }
|
---|