1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.PluginInfrastructure;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.NCA {
|
---|
34 | /// <summary>
|
---|
35 | /// Neighborhood Components Analysis
|
---|
36 | /// </summary>
|
---|
37 | [Item("NCA", "Neihborhood Components Analysis is described in J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. 2005. Neighbourhood Component Analysis. Advances in Neural Information Processing Systems, 17. pp. 513-520.")]
|
---|
38 | [Creatable("Data Analysis")]
|
---|
39 | [StorableClass]
|
---|
40 | public sealed class NCA : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
41 | #region Parameter Properties
|
---|
42 | public IValueLookupParameter<IntValue> KParameter {
|
---|
43 | get { return (IValueLookupParameter<IntValue>)Parameters["k"]; }
|
---|
44 | }
|
---|
45 | public IValueLookupParameter<IntValue> ReduceDimensionsParameter {
|
---|
46 | get { return (IValueLookupParameter<IntValue>)Parameters["ReduceDimensions"]; }
|
---|
47 | }
|
---|
48 | private IConstrainedValueParameter<INCAInitializer> InitializationParameter {
|
---|
49 | get { return (IConstrainedValueParameter<INCAInitializer>)Parameters["Initialization"]; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 |
|
---|
53 | #region Properties
|
---|
54 | public IntValue K {
|
---|
55 | get { return KParameter.Value; }
|
---|
56 | }
|
---|
57 | public IntValue ReduceDimensions {
|
---|
58 | get { return ReduceDimensionsParameter.Value; }
|
---|
59 | }
|
---|
60 | #endregion
|
---|
61 |
|
---|
62 | [StorableConstructor]
|
---|
63 | private NCA(bool deserializing) : base(deserializing) { }
|
---|
64 | private NCA(NCA original, Cloner cloner) : base(original, cloner) { }
|
---|
65 | public NCA()
|
---|
66 | : base() {
|
---|
67 | Parameters.Add(new ValueLookupParameter<IntValue>("k", "The k for the nearest neighbor.", new IntValue(1)));
|
---|
68 | Parameters.Add(new ValueLookupParameter<IntValue>("ReduceDimensions", "The number of dimensions that NCA should reduce the data to.", new IntValue(2)));
|
---|
69 | Parameters.Add(new ConstrainedValueParameter<INCAInitializer>("Initialization", "Which method should be used to initialize the matrix. Typically LDA (linear discriminant analysis) should provide a good estimate."));
|
---|
70 |
|
---|
71 | INCAInitializer defaultInitializer = null;
|
---|
72 | foreach (var initializer in ApplicationManager.Manager.GetInstances<INCAInitializer>().OrderBy(x => x.ItemName)) {
|
---|
73 | if (initializer is LDAInitializer) defaultInitializer = initializer;
|
---|
74 | InitializationParameter.ValidValues.Add(initializer);
|
---|
75 | }
|
---|
76 | if (defaultInitializer != null) InitializationParameter.Value = defaultInitializer;
|
---|
77 |
|
---|
78 | Problem = new ClassificationProblem();
|
---|
79 | }
|
---|
80 |
|
---|
81 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
82 | return new NCA(this, cloner);
|
---|
83 | }
|
---|
84 |
|
---|
85 | public override void Prepare() {
|
---|
86 | if (Problem != null) base.Prepare();
|
---|
87 | }
|
---|
88 |
|
---|
89 | protected override void Run() {
|
---|
90 | var classification = NeighborhoodComponentsAnalysis.CreateNCASolution(Problem.ProblemData, K.Value, ReduceDimensions.Value, InitializationParameter.Value);
|
---|
91 | Results.Add(new Result("ClassificationSolution", "The classification solution.", classification));
|
---|
92 | }
|
---|
93 | }
|
---|
94 | }
|
---|