1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.NCA {
|
---|
30 | [Item("LDA", "Initializes the matrix by performing a linear discriminant analysis.")]
|
---|
31 | [StorableClass]
|
---|
32 | public class LDAInitializer : Item, INCAInitializer {
|
---|
33 |
|
---|
34 | [StorableConstructor]
|
---|
35 | protected LDAInitializer(bool deserializing) : base(deserializing) { }
|
---|
36 | protected LDAInitializer(LDAInitializer original, Cloner cloner) : base(original, cloner) { }
|
---|
37 | public LDAInitializer() : base() { }
|
---|
38 |
|
---|
39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
40 | return new LDAInitializer(this, cloner);
|
---|
41 | }
|
---|
42 |
|
---|
43 | public double[] Initialize(IClassificationProblemData data, int dimensions) {
|
---|
44 | var instances = data.TrainingIndices.Count();
|
---|
45 | var attributes = data.AllowedInputVariables.Count();
|
---|
46 |
|
---|
47 | var ldaDs = new double[instances, attributes + 1];
|
---|
48 | int row, col = 0;
|
---|
49 | foreach (var variable in data.AllowedInputVariables) {
|
---|
50 | row = 0;
|
---|
51 | foreach (var value in data.Dataset.GetDoubleValues(variable, data.TrainingIndices)) {
|
---|
52 | ldaDs[row, col] = value;
|
---|
53 | row++;
|
---|
54 | }
|
---|
55 | col++;
|
---|
56 | }
|
---|
57 | row = 0;
|
---|
58 | var uniqueClasses = new Dictionary<double, int>();
|
---|
59 | foreach (var label in data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices)) {
|
---|
60 | if (!uniqueClasses.ContainsKey(label))
|
---|
61 | uniqueClasses[label] = uniqueClasses.Count;
|
---|
62 | ldaDs[row++, attributes] = label;
|
---|
63 | }
|
---|
64 | for (row = 0; row < instances; row++)
|
---|
65 | ldaDs[row, attributes] = uniqueClasses[ldaDs[row, attributes]];
|
---|
66 |
|
---|
67 | int info;
|
---|
68 | double[,] matrix;
|
---|
69 | alglib.fisherldan(ldaDs, instances, attributes, uniqueClasses.Count, out info, out matrix);
|
---|
70 |
|
---|
71 | var result = new double[attributes * dimensions];
|
---|
72 | for (int i = 0; i < attributes; i++)
|
---|
73 | for (int j = 0; j < dimensions; j++)
|
---|
74 | result[i * dimensions + j] = matrix[i, j];
|
---|
75 |
|
---|
76 | return result;
|
---|
77 | }
|
---|
78 |
|
---|
79 | }
|
---|
80 | }
|
---|