[14451] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[14453] | 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Analysis;
|
---|
[14451] | 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
[14453] | 29 | using HeuristicLab.Optimization.Operators;
|
---|
[14451] | 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Problems.Instances;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.QuadraticAssignment {
|
---|
[14453] | 35 | [Item("Basic Quadratic Assignment Problem (QAP)", "The Quadratic Assignment Problem (QAP) can be described as the problem of assigning N facilities to N fixed locations such that there is exactly one facility in each location and that the sum of the distances multiplied by the connection strength between the facilities becomes minimal.")]
|
---|
[14451] | 36 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 141)]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class QAPBasicProblem : SingleObjectiveBasicProblem<PermutationEncoding>,
|
---|
| 39 | IProblemInstanceConsumer<QAPData>,
|
---|
| 40 | IProblemInstanceConsumer<TSPData> {
|
---|
| 41 |
|
---|
| 42 | [Storable]
|
---|
| 43 | private IValueParameter<DoubleMatrix> weightsParameter;
|
---|
| 44 | public DoubleMatrix Weights {
|
---|
| 45 | get { return weightsParameter.Value; }
|
---|
| 46 | set { weightsParameter.Value = value; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | [Storable]
|
---|
| 50 | private IValueParameter<DoubleMatrix> distancesParameter;
|
---|
| 51 | public DoubleMatrix Distances {
|
---|
| 52 | get { return distancesParameter.Value; }
|
---|
| 53 | set { distancesParameter.Value = value; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 |
|
---|
| 57 | [StorableConstructor]
|
---|
| 58 | private QAPBasicProblem(bool deserializing) : base(deserializing) { }
|
---|
| 59 | private QAPBasicProblem(QAPBasicProblem original, Cloner cloner)
|
---|
| 60 | : base(original, cloner) {
|
---|
| 61 | weightsParameter = cloner.Clone(original.weightsParameter);
|
---|
| 62 | distancesParameter = cloner.Clone(original.distancesParameter);
|
---|
| 63 | }
|
---|
| 64 | public QAPBasicProblem() {
|
---|
| 65 | Parameters.Add(weightsParameter = new ValueParameter<DoubleMatrix>("Weights", "The weights matrix.", new DoubleMatrix(5, 5)));
|
---|
| 66 | Parameters.Add(distancesParameter = new ValueParameter<DoubleMatrix>("Distances", "The distances matrix.", new DoubleMatrix(5, 5)));
|
---|
[14453] | 67 |
|
---|
| 68 | Operators.Add(new HammingSimilarityCalculator());
|
---|
| 69 | Operators.Add(new QualitySimilarityCalculator());
|
---|
| 70 | Operators.Add(new PopulationSimilarityAnalyzer(Operators.OfType<ISolutionSimilarityCalculator>()));
|
---|
| 71 |
|
---|
| 72 | Parameterize();
|
---|
[14451] | 73 | }
|
---|
| 74 |
|
---|
| 75 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 76 | return new QAPBasicProblem(this, cloner);
|
---|
| 77 | }
|
---|
| 78 |
|
---|
[14453] | 79 | protected override void OnEncodingChanged() {
|
---|
| 80 | base.OnEncodingChanged();
|
---|
| 81 | Parameterize();
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | private void Parameterize() {
|
---|
| 85 | foreach (var similarityCalculator in Operators.OfType<ISolutionSimilarityCalculator>()) {
|
---|
| 86 | similarityCalculator.SolutionVariableName = Encoding.SolutionCreator.PermutationParameter.ActualName;
|
---|
| 87 | similarityCalculator.QualityVariableName = Evaluator.QualityParameter.ActualName;
|
---|
| 88 | }
|
---|
| 89 | }
|
---|
| 90 |
|
---|
[14451] | 91 | public override bool Maximization {
|
---|
| 92 | get { return false; }
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
| 96 | return QAPEvaluator.Apply(individual.Permutation(), Weights, Distances);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | public void Load(QAPData data) {
|
---|
| 100 | var weights = new DoubleMatrix(data.Weights);
|
---|
| 101 | var distances = new DoubleMatrix(data.Distances);
|
---|
| 102 | Name = data.Name;
|
---|
| 103 | Description = data.Description;
|
---|
| 104 | Load(weights, distances);
|
---|
| 105 | if (data.BestKnownQuality.HasValue) BestKnownQuality = data.BestKnownQuality.Value;
|
---|
| 106 | EvaluateAndLoadAssignment(data.BestKnownAssignment);
|
---|
| 107 | OnReset();
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | public void Load(TSPData data) {
|
---|
| 111 | if (data.Dimension > 1000)
|
---|
| 112 | throw new System.IO.InvalidDataException("Instances with more than 1000 customers are not supported by the QAP.");
|
---|
| 113 | var weights = new DoubleMatrix(data.Dimension, data.Dimension);
|
---|
| 114 | for (int i = 0; i < data.Dimension; i++)
|
---|
| 115 | weights[i, (i + 1) % data.Dimension] = 1;
|
---|
| 116 | var distances = new DoubleMatrix(data.GetDistanceMatrix());
|
---|
| 117 | Name = data.Name;
|
---|
| 118 | Description = data.Description;
|
---|
| 119 | Load(weights, distances);
|
---|
| 120 | if (data.BestKnownQuality.HasValue) BestKnownQuality = data.BestKnownQuality.Value;
|
---|
| 121 | EvaluateAndLoadAssignment(data.BestKnownTour);
|
---|
| 122 | OnReset();
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | public void Load(DoubleMatrix weights, DoubleMatrix distances) {
|
---|
| 126 | if (weights == null || weights.Rows == 0)
|
---|
| 127 | throw new System.IO.InvalidDataException("The given instance does not contain weights!");
|
---|
| 128 | if (weights.Rows != weights.Columns)
|
---|
| 129 | throw new System.IO.InvalidDataException("The weights matrix is not a square matrix!");
|
---|
| 130 | if (distances == null || distances.Rows == 0)
|
---|
| 131 | throw new System.IO.InvalidDataException("The given instance does not contain distances!");
|
---|
| 132 | if (distances.Rows != distances.Columns)
|
---|
| 133 | throw new System.IO.InvalidDataException("The distances matrix is not a square matrix!");
|
---|
| 134 | if (weights.Rows != distances.Columns)
|
---|
| 135 | throw new System.IO.InvalidDataException("The weights matrix and the distance matrix are not of equal size!");
|
---|
| 136 |
|
---|
| 137 | Weights = weights;
|
---|
| 138 | Distances = distances;
|
---|
[14453] | 139 | Encoding.Length = Weights.Rows;
|
---|
[14451] | 140 |
|
---|
| 141 | BestKnownQuality = double.NaN;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | public void EvaluateAndLoadAssignment(int[] assignment) {
|
---|
| 145 | if (assignment == null || assignment.Length == 0) return;
|
---|
| 146 | var vector = new Permutation(PermutationTypes.Absolute, assignment);
|
---|
| 147 | var result = QAPEvaluator.Apply(vector, Weights, Distances);
|
---|
| 148 | BestKnownQuality = result;
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | }
|
---|