[14420] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[14556] | 25 | using System.Runtime.CompilerServices;
|
---|
[14420] | 26 | using System.Threading;
|
---|
[14450] | 27 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
| 28 | using HeuristicLab.Algorithms.MemPR.Util;
|
---|
[14420] | 29 | using HeuristicLab.Common;
|
---|
| 30 | using HeuristicLab.Core;
|
---|
[14450] | 31 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
[14420] | 32 | using HeuristicLab.Optimization;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 34 | using HeuristicLab.PluginInfrastructure;
|
---|
| 35 | using HeuristicLab.Random;
|
---|
| 36 |
|
---|
[14450] | 37 | namespace HeuristicLab.Algorithms.MemPR.Permutation {
|
---|
| 38 | [Item("MemPR (permutation)", "MemPR implementation for permutations.")]
|
---|
[14420] | 39 | [StorableClass]
|
---|
| 40 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 999)]
|
---|
[14552] | 41 | public class PermutationMemPR : MemPRAlgorithm<ISingleObjectiveHeuristicOptimizationProblem, Encodings.PermutationEncoding.Permutation, PermutationMemPRPopulationContext, PermutationMemPRSolutionContext> {
|
---|
[14450] | 42 | #if DEBUG
|
---|
| 43 | private const bool VALIDATE = true;
|
---|
| 44 | #else
|
---|
| 45 | private const bool VALIDATE = false;
|
---|
| 46 | #endif
|
---|
| 47 |
|
---|
[14420] | 48 | [StorableConstructor]
|
---|
[14450] | 49 | protected PermutationMemPR(bool deserializing) : base(deserializing) { }
|
---|
| 50 | protected PermutationMemPR(PermutationMemPR original, Cloner cloner) : base(original, cloner) { }
|
---|
| 51 | public PermutationMemPR() {
|
---|
| 52 | foreach (var trainer in ApplicationManager.Manager.GetInstances<ISolutionModelTrainer<PermutationMemPRPopulationContext>>())
|
---|
[14420] | 53 | SolutionModelTrainerParameter.ValidValues.Add(trainer);
|
---|
[14563] | 54 |
|
---|
| 55 | if (SolutionModelTrainerParameter.ValidValues.Count > 0) {
|
---|
| 56 | var unbiased = SolutionModelTrainerParameter.ValidValues.FirstOrDefault(x => !x.Bias);
|
---|
| 57 | if (unbiased != null) SolutionModelTrainerParameter.Value = unbiased;
|
---|
| 58 | }
|
---|
| 59 |
|
---|
[14450] | 60 | foreach (var localSearch in ApplicationManager.Manager.GetInstances<ILocalSearch<PermutationMemPRSolutionContext>>()) {
|
---|
| 61 | LocalSearchParameter.ValidValues.Add(localSearch);
|
---|
[14420] | 62 | }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[14450] | 66 | return new PermutationMemPR(this, cloner);
|
---|
[14420] | 67 | }
|
---|
| 68 |
|
---|
[14550] | 69 | protected override bool Eq(Encodings.PermutationEncoding.Permutation a, Encodings.PermutationEncoding.Permutation b) {
|
---|
| 70 | return new PermutationEqualityComparer().Equals(a, b);
|
---|
[14420] | 71 | }
|
---|
| 72 |
|
---|
[14450] | 73 | protected override double Dist(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> a, ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> b) {
|
---|
| 74 | return Dist(a.Solution, b.Solution);
|
---|
[14420] | 75 | }
|
---|
| 76 |
|
---|
[14450] | 77 | private static double Dist(Encodings.PermutationEncoding.Permutation a, Encodings.PermutationEncoding.Permutation b) {
|
---|
[14466] | 78 | return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a, b);
|
---|
[14420] | 79 | }
|
---|
| 80 |
|
---|
[14450] | 81 | protected override ISolutionSubspace<Encodings.PermutationEncoding.Permutation> CalculateSubspace(IEnumerable<Encodings.PermutationEncoding.Permutation> solutions, bool inverse = false) {
|
---|
[14552] | 82 | var solutionsIter = solutions.GetEnumerator();
|
---|
| 83 | if (!solutionsIter.MoveNext()) throw new ArgumentException("Cannot calculate sub-space when no solutions are given.");
|
---|
| 84 | var first = solutionsIter.Current;
|
---|
[14450] | 85 |
|
---|
[14552] | 86 | var N = solutionsIter.Current.Length;
|
---|
| 87 | var type = solutionsIter.Current.PermutationType;
|
---|
| 88 | var subspace = new bool[N, type == PermutationTypes.Absolute ? 1 : N];
|
---|
| 89 | switch (type) {
|
---|
[14450] | 90 | case PermutationTypes.Absolute: {
|
---|
| 91 | if (inverse) {
|
---|
| 92 | for (var i = 0; i < subspace.GetLength(0); i++)
|
---|
| 93 | subspace[i, 0] = true;
|
---|
| 94 | }
|
---|
[14552] | 95 | while (solutionsIter.MoveNext()) {
|
---|
| 96 | var s = solutionsIter.Current;
|
---|
[14450] | 97 | for (var i = 0; i < s.Length; i++) {
|
---|
| 98 | if (first[i] != s[i]) subspace[i, 0] = !inverse;
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 | }
|
---|
| 102 | break;
|
---|
| 103 | case PermutationTypes.RelativeDirected: {
|
---|
| 104 | if (inverse) {
|
---|
| 105 | for (var i = 0; i < subspace.GetLength(0); i++)
|
---|
| 106 | for (var j = 0; j < subspace.GetLength(1); j++)
|
---|
| 107 | subspace[i, j] = true;
|
---|
| 108 | }
|
---|
| 109 | var placedFirst = new int[first.Length];
|
---|
| 110 | for (var i = 0; i < first.Length; i++) {
|
---|
| 111 | placedFirst[first[i]] = i;
|
---|
| 112 | }
|
---|
[14552] | 113 | while (solutionsIter.MoveNext()) {
|
---|
| 114 | var s = solutionsIter.Current;
|
---|
[14450] | 115 | for (var i = 0; i < s.Length; i++) {
|
---|
| 116 | if (placedFirst[s[i]] - placedFirst[s.GetCircular(i + 1)] != -1)
|
---|
| 117 | subspace[i, 0] = !inverse;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | break;
|
---|
| 122 | case PermutationTypes.RelativeUndirected: {
|
---|
| 123 | if (inverse) {
|
---|
| 124 | for (var i = 0; i < subspace.GetLength(0); i++)
|
---|
| 125 | for (var j = 0; j < subspace.GetLength(1); j++)
|
---|
| 126 | subspace[i, j] = true;
|
---|
| 127 | }
|
---|
| 128 | var placedFirst = new int[first.Length];
|
---|
| 129 | for (var i = 0; i < first.Length; i++) {
|
---|
| 130 | placedFirst[first[i]] = i;
|
---|
| 131 | }
|
---|
[14552] | 132 | while (solutionsIter.MoveNext()) {
|
---|
| 133 | var s = solutionsIter.Current;
|
---|
[14450] | 134 | for (var i = 0; i < s.Length; i++) {
|
---|
| 135 | if (Math.Abs(placedFirst[s[i]] - placedFirst[s.GetCircular(i + 1)]) != 1)
|
---|
| 136 | subspace[i, 0] = !inverse;
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 | }
|
---|
| 140 | break;
|
---|
| 141 | default:
|
---|
[14552] | 142 | throw new ArgumentException(string.Format("Unknown permutation type {0}", type));
|
---|
[14450] | 143 | }
|
---|
| 144 | return new PermutationSolutionSubspace(subspace);
|
---|
| 145 | }
|
---|
| 146 |
|
---|
[14544] | 147 | protected override void AdaptiveWalk(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> scope, int maxEvals, CancellationToken token, ISolutionSubspace<Encodings.PermutationEncoding.Permutation> subspace = null) {
|
---|
[14450] | 148 | var quality = scope.Fitness;
|
---|
| 149 | try {
|
---|
[14552] | 150 | TabuWalk(Context.Random, scope.Solution, Context.Evaluate, token, ref quality, maxEvals, subspace != null ? ((PermutationSolutionSubspace)subspace).Subspace : null);
|
---|
[14450] | 151 | } finally {
|
---|
| 152 | scope.Fitness = quality;
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
| 155 |
|
---|
[14552] | 156 | public void TabuWalk(IRandom random, Encodings.PermutationEncoding.Permutation perm, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, ref double quality, int maxEvals = int.MaxValue, bool[,] subspace = null) {
|
---|
[14450] | 157 | switch (perm.PermutationType) {
|
---|
| 158 | case PermutationTypes.Absolute:
|
---|
[14552] | 159 | TabuWalkSwap(random, perm, eval, token, ref quality, maxEvals, subspace);
|
---|
[14450] | 160 | break;
|
---|
| 161 | case PermutationTypes.RelativeDirected:
|
---|
[14552] | 162 | TabuWalkShift(random, perm, eval, token, ref quality, maxEvals, subspace);
|
---|
[14450] | 163 | break;
|
---|
| 164 | case PermutationTypes.RelativeUndirected:
|
---|
[14552] | 165 | TabuWalkOpt(random, perm, eval, token, ref quality, maxEvals, subspace);
|
---|
[14450] | 166 | break;
|
---|
| 167 | default: throw new ArgumentException(string.Format("Permutation type {0} is not known", perm.PermutationType));
|
---|
| 168 | }
|
---|
| 169 | if (VALIDATE && !perm.Validate()) throw new ArgumentException("TabuWalk produced invalid child");
|
---|
| 170 | }
|
---|
| 171 |
|
---|
[14552] | 172 | public int TabuWalkSwap(IRandom random, Encodings.PermutationEncoding.Permutation perm, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, ref double quality, int maxEvals = int.MaxValue, bool[,] subspace = null) {
|
---|
[14453] | 173 | var evaluations = 0;
|
---|
[14552] | 174 | var maximization = Context.Maximization;
|
---|
[14453] | 175 | if (double.IsNaN(quality)) {
|
---|
[14552] | 176 | quality = eval(perm, token);
|
---|
[14453] | 177 | evaluations++;
|
---|
| 178 | }
|
---|
[14450] | 179 | Encodings.PermutationEncoding.Permutation bestOfTheWalk = null;
|
---|
| 180 | double bestOfTheWalkF = double.NaN;
|
---|
| 181 | var current = (Encodings.PermutationEncoding.Permutation)perm.Clone();
|
---|
| 182 | var currentF = quality;
|
---|
| 183 | var overallImprovement = false;
|
---|
| 184 | var tabu = new double[current.Length, current.Length];
|
---|
| 185 | for (var i = 0; i < current.Length; i++) {
|
---|
| 186 | for (var j = i; j < current.Length; j++) {
|
---|
[14477] | 187 | tabu[i, j] = tabu[j, i] = maximization ? double.MinValue : double.MaxValue;
|
---|
[14420] | 188 | }
|
---|
[14450] | 189 | tabu[i, current[i]] = currentF;
|
---|
[14420] | 190 | }
|
---|
[14450] | 191 |
|
---|
[14456] | 192 | var steps = 0;
|
---|
| 193 | var stepsUntilBestOfWalk = 0;
|
---|
| 194 | for (var iter = 0; iter < int.MaxValue; iter++) {
|
---|
[14450] | 195 | var allTabu = true;
|
---|
| 196 | var bestOfTheRestF = double.NaN;
|
---|
| 197 | Swap2Move bestOfTheRest = null;
|
---|
| 198 | var improved = false;
|
---|
| 199 | foreach (var swap in ExhaustiveSwap2MoveGenerator.Generate(current).Shuffle(random)) {
|
---|
[14456] | 200 | if (subspace != null && !(subspace[swap.Index1, 0] && subspace[swap.Index2, 0]))
|
---|
[14450] | 201 | continue;
|
---|
| 202 |
|
---|
| 203 | var h = current[swap.Index1];
|
---|
| 204 | current[swap.Index1] = current[swap.Index2];
|
---|
| 205 | current[swap.Index2] = h;
|
---|
[14552] | 206 | var q = eval(current, token);
|
---|
[14453] | 207 | evaluations++;
|
---|
[14456] | 208 | if (FitnessComparer.IsBetter(maximization, q, quality)) {
|
---|
[14450] | 209 | overallImprovement = true;
|
---|
| 210 | quality = q;
|
---|
| 211 | for (var i = 0; i < current.Length; i++) perm[i] = current[i];
|
---|
| 212 | }
|
---|
| 213 | // check if it would not be an improvement to swap these into their positions
|
---|
[14456] | 214 | var isTabu = !FitnessComparer.IsBetter(maximization, q, tabu[swap.Index1, current[swap.Index1]])
|
---|
| 215 | && !FitnessComparer.IsBetter(maximization, q, tabu[swap.Index2, current[swap.Index2]]);
|
---|
[14450] | 216 | if (!isTabu) allTabu = false;
|
---|
[14456] | 217 | if (FitnessComparer.IsBetter(maximization, q, currentF) && !isTabu) {
|
---|
| 218 | if (FitnessComparer.IsBetter(maximization, q, bestOfTheWalkF)) {
|
---|
[14450] | 219 | bestOfTheWalk = (Encodings.PermutationEncoding.Permutation)current.Clone();
|
---|
| 220 | bestOfTheWalkF = q;
|
---|
[14456] | 221 | stepsUntilBestOfWalk = steps;
|
---|
[14450] | 222 | }
|
---|
[14456] | 223 | steps++;
|
---|
[14450] | 224 | improved = true;
|
---|
| 225 | // perform the move
|
---|
| 226 | currentF = q;
|
---|
| 227 | // mark that to move them to their previous position requires to make an improvement
|
---|
[14456] | 228 | tabu[swap.Index1, current[swap.Index2]] = maximization ? Math.Max(q, tabu[swap.Index1, current[swap.Index2]])
|
---|
| 229 | : Math.Min(q, tabu[swap.Index1, current[swap.Index2]]);
|
---|
| 230 | tabu[swap.Index2, current[swap.Index1]] = maximization ? Math.Max(q, tabu[swap.Index2, current[swap.Index1]])
|
---|
| 231 | : Math.Min(q, tabu[swap.Index2, current[swap.Index1]]);
|
---|
[14450] | 232 | } else { // undo the move
|
---|
[14456] | 233 | if (!isTabu && FitnessComparer.IsBetter(maximization, q, bestOfTheRestF)) {
|
---|
[14450] | 234 | bestOfTheRest = swap;
|
---|
| 235 | bestOfTheRestF = q;
|
---|
| 236 | }
|
---|
| 237 | current[swap.Index2] = current[swap.Index1];
|
---|
| 238 | current[swap.Index1] = h;
|
---|
| 239 | }
|
---|
[14456] | 240 | if (evaluations >= maxEvals) break;
|
---|
[14450] | 241 | }
|
---|
[14456] | 242 | if (!allTabu && !improved && bestOfTheRest != null) {
|
---|
| 243 | tabu[bestOfTheRest.Index1, current[bestOfTheRest.Index1]] = maximization ? Math.Max(currentF, tabu[bestOfTheRest.Index1, current[bestOfTheRest.Index1]])
|
---|
| 244 | : Math.Min(currentF, tabu[bestOfTheRest.Index1, current[bestOfTheRest.Index1]]);
|
---|
| 245 | tabu[bestOfTheRest.Index2, current[bestOfTheRest.Index2]] = maximization ? Math.Max(currentF, tabu[bestOfTheRest.Index2, current[bestOfTheRest.Index2]])
|
---|
| 246 | : Math.Min(currentF, tabu[bestOfTheRest.Index2, current[bestOfTheRest.Index2]]);
|
---|
[14450] | 247 |
|
---|
| 248 | var h = current[bestOfTheRest.Index1];
|
---|
| 249 | current[bestOfTheRest.Index1] = current[bestOfTheRest.Index2];
|
---|
| 250 | current[bestOfTheRest.Index2] = h;
|
---|
| 251 |
|
---|
| 252 | currentF = bestOfTheRestF;
|
---|
[14456] | 253 | steps++;
|
---|
[14450] | 254 | } else if (allTabu) break;
|
---|
[14456] | 255 | if (evaluations >= maxEvals) break;
|
---|
[14450] | 256 | }
|
---|
[14453] | 257 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14450] | 258 | if (!overallImprovement && bestOfTheWalk != null) {
|
---|
| 259 | quality = bestOfTheWalkF;
|
---|
| 260 | for (var i = 0; i < current.Length; i++) perm[i] = bestOfTheWalk[i];
|
---|
| 261 | }
|
---|
[14456] | 262 | return stepsUntilBestOfWalk;
|
---|
[14420] | 263 | }
|
---|
| 264 |
|
---|
[14552] | 265 | public int TabuWalkShift(IRandom random, Encodings.PermutationEncoding.Permutation perm, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, ref double quality, int maxEvals = int.MaxValue, bool[,] subspace = null) {
|
---|
[14456] | 266 | return 0;
|
---|
[14420] | 267 | }
|
---|
| 268 |
|
---|
[14552] | 269 | public int TabuWalkOpt(IRandom random, Encodings.PermutationEncoding.Permutation perm, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, ref double quality, int maxEvals = int.MaxValue, bool[,] subspace = null) {
|
---|
| 270 | var maximization = Context.Maximization;
|
---|
[14453] | 271 | var evaluations = 0;
|
---|
| 272 | if (double.IsNaN(quality)) {
|
---|
[14552] | 273 | quality = eval(perm, token);
|
---|
[14453] | 274 | evaluations++;
|
---|
| 275 | }
|
---|
[14450] | 276 | Encodings.PermutationEncoding.Permutation bestOfTheWalk = null;
|
---|
[14456] | 277 | var bestOfTheWalkF = double.NaN;
|
---|
[14450] | 278 | var current = (Encodings.PermutationEncoding.Permutation)perm.Clone();
|
---|
| 279 | var currentF = quality;
|
---|
| 280 | var overallImprovement = false;
|
---|
| 281 | var tabu = new double[current.Length, current.Length];
|
---|
| 282 | for (var i = 0; i < current.Length; i++) {
|
---|
| 283 | for (var j = i; j < current.Length; j++) {
|
---|
| 284 | tabu[i, j] = tabu[j, i] = double.MaxValue;
|
---|
| 285 | }
|
---|
| 286 | tabu[current[i], current.GetCircular(i + 1)] = currentF;
|
---|
| 287 | tabu[current.GetCircular(i + 1), current[i]] = currentF;
|
---|
| 288 | }
|
---|
[14420] | 289 |
|
---|
[14456] | 290 | var steps = 0;
|
---|
| 291 | var stepsUntilBestOfWalk = 0;
|
---|
| 292 | for (var iter = 0; iter < int.MaxValue; iter++) {
|
---|
[14420] | 293 | var allTabu = true;
|
---|
| 294 | var bestOfTheRestF = double.NaN;
|
---|
[14450] | 295 | InversionMove bestOfTheRest = null;
|
---|
[14420] | 296 | var improved = false;
|
---|
[14563] | 297 |
|
---|
[14450] | 298 | foreach (var opt in ExhaustiveInversionMoveGenerator.Generate(current).Shuffle(random)) {
|
---|
| 299 | var prev = opt.Index1 - 1;
|
---|
| 300 | var next = (opt.Index2 + 1) % current.Length;
|
---|
| 301 | if (prev < 0) prev += current.Length;
|
---|
[14456] | 302 | if (subspace != null && !(subspace[current[prev], current[opt.Index1]] && subspace[current[opt.Index2], current[next]]))
|
---|
[14450] | 303 | continue;
|
---|
[14420] | 304 |
|
---|
[14556] | 305 | current.Reverse(opt.Index1, opt.Index2 - opt.Index1 + 1);
|
---|
[14450] | 306 |
|
---|
[14552] | 307 | var q = eval(current, token);
|
---|
[14453] | 308 | evaluations++;
|
---|
[14456] | 309 | if (FitnessComparer.IsBetter(maximization, q, quality)) {
|
---|
[14450] | 310 | overallImprovement = true;
|
---|
| 311 | quality = q;
|
---|
| 312 | for (var i = 0; i < current.Length; i++) perm[i] = current[i];
|
---|
[14420] | 313 | }
|
---|
[14450] | 314 | // check if it would not be an improvement to opt these into their positions
|
---|
[14456] | 315 | var isTabu = !FitnessComparer.IsBetter(maximization, q, tabu[current[prev], current[opt.Index1]])
|
---|
| 316 | && !FitnessComparer.IsBetter(maximization, q, tabu[current[opt.Index2], current[next]]);
|
---|
[14420] | 317 | if (!isTabu) allTabu = false;
|
---|
[14456] | 318 | if (!isTabu && FitnessComparer.IsBetter(maximization, q, currentF)) {
|
---|
| 319 | if (FitnessComparer.IsBetter(maximization, q, bestOfTheWalkF)) {
|
---|
[14450] | 320 | bestOfTheWalk = (Encodings.PermutationEncoding.Permutation)current.Clone();
|
---|
| 321 | bestOfTheWalkF = q;
|
---|
[14456] | 322 | stepsUntilBestOfWalk = steps;
|
---|
[14450] | 323 | }
|
---|
[14420] | 324 |
|
---|
[14456] | 325 | steps++;
|
---|
[14420] | 326 | improved = true;
|
---|
[14450] | 327 | // perform the move
|
---|
| 328 | currentF = q;
|
---|
| 329 | // mark that to move them to their previous position requires to make an improvement
|
---|
[14456] | 330 | if (maximization) {
|
---|
| 331 | tabu[current[prev], current[opt.Index2]] = Math.Max(q, tabu[current[prev], current[opt.Index2]]);
|
---|
| 332 | tabu[current[opt.Index2], current[prev]] = Math.Max(q, tabu[current[opt.Index2], current[prev]]);
|
---|
| 333 | tabu[current[opt.Index1], current[next]] = Math.Max(q, tabu[current[opt.Index1], current[next]]);
|
---|
| 334 | tabu[current[next], current[opt.Index1]] = Math.Max(q, tabu[current[next], current[opt.Index1]]);
|
---|
| 335 | } else {
|
---|
| 336 | tabu[current[prev], current[opt.Index2]] = Math.Min(q, tabu[current[prev], current[opt.Index2]]);
|
---|
| 337 | tabu[current[opt.Index2], current[prev]] = Math.Min(q, tabu[current[opt.Index2], current[prev]]);
|
---|
| 338 | tabu[current[opt.Index1], current[next]] = Math.Min(q, tabu[current[opt.Index1], current[next]]);
|
---|
| 339 | tabu[current[next], current[opt.Index1]] = Math.Min(q, tabu[current[next], current[opt.Index1]]);
|
---|
| 340 | }
|
---|
[14420] | 341 | } else { // undo the move
|
---|
[14456] | 342 | if (!isTabu && FitnessComparer.IsBetter(maximization, q, bestOfTheRestF)) {
|
---|
[14450] | 343 | bestOfTheRest = opt;
|
---|
| 344 | bestOfTheRestF = q;
|
---|
[14420] | 345 | }
|
---|
[14556] | 346 |
|
---|
| 347 | current.Reverse(opt.Index1, opt.Index2 - opt.Index1 + 1);
|
---|
[14420] | 348 | }
|
---|
[14456] | 349 | if (evaluations >= maxEvals) break;
|
---|
[14420] | 350 | }
|
---|
[14456] | 351 | if (!allTabu && !improved && bestOfTheRest != null) {
|
---|
[14450] | 352 | var prev = bestOfTheRest.Index1 - 1;
|
---|
| 353 | var next = (bestOfTheRest.Index2 + 1) % current.Length;
|
---|
| 354 | if (prev < 0) prev += current.Length;
|
---|
| 355 |
|
---|
[14456] | 356 | if (maximization) {
|
---|
| 357 | tabu[current[prev], current[bestOfTheRest.Index1]] = Math.Max(currentF, tabu[current[prev], current[bestOfTheRest.Index1]]);
|
---|
| 358 | tabu[current[bestOfTheRest.Index1], current[prev]] = Math.Max(currentF, tabu[current[bestOfTheRest.Index1], current[prev]]);
|
---|
| 359 | tabu[current[bestOfTheRest.Index2], current[next]] = Math.Max(currentF, tabu[current[bestOfTheRest.Index2], current[next]]);
|
---|
| 360 | tabu[current[next], current[bestOfTheRest.Index2]] = Math.Max(currentF, tabu[current[next], current[bestOfTheRest.Index2]]);
|
---|
| 361 | } else {
|
---|
| 362 | tabu[current[prev], current[bestOfTheRest.Index1]] = Math.Min(currentF, tabu[current[prev], current[bestOfTheRest.Index1]]);
|
---|
| 363 | tabu[current[bestOfTheRest.Index1], current[prev]] = Math.Min(currentF, tabu[current[bestOfTheRest.Index1], current[prev]]);
|
---|
| 364 | tabu[current[bestOfTheRest.Index2], current[next]] = Math.Min(currentF, tabu[current[bestOfTheRest.Index2], current[next]]);
|
---|
| 365 | tabu[current[next], current[bestOfTheRest.Index2]] = Math.Min(currentF, tabu[current[next], current[bestOfTheRest.Index2]]);
|
---|
| 366 | }
|
---|
[14556] | 367 | current.Reverse(bestOfTheRest.Index1, bestOfTheRest.Index2 - bestOfTheRest.Index1 + 1);
|
---|
[14450] | 368 |
|
---|
| 369 | currentF = bestOfTheRestF;
|
---|
[14456] | 370 | steps++;
|
---|
[14420] | 371 | } else if (allTabu) break;
|
---|
[14456] | 372 | if (evaluations >= maxEvals) break;
|
---|
[14420] | 373 | }
|
---|
[14453] | 374 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14450] | 375 | if (!overallImprovement && bestOfTheWalk != null) {
|
---|
| 376 | quality = bestOfTheWalkF;
|
---|
| 377 | for (var i = 0; i < current.Length; i++) perm[i] = bestOfTheWalk[i];
|
---|
| 378 | }
|
---|
[14456] | 379 | return stepsUntilBestOfWalk;
|
---|
[14450] | 380 | }
|
---|
[14420] | 381 |
|
---|
[14544] | 382 | protected override ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> Breed(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p1, ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p2, CancellationToken token) {
|
---|
| 383 | ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> child = null;
|
---|
[14450] | 384 |
|
---|
| 385 | if (p1.Solution.PermutationType == PermutationTypes.Absolute) {
|
---|
[14544] | 386 | child = CrossAbsolute(p1, p2, token);
|
---|
[14450] | 387 | } else if (p1.Solution.PermutationType == PermutationTypes.RelativeDirected) {
|
---|
[14544] | 388 | child = CrossRelativeDirected(p1, p2, token);
|
---|
[14450] | 389 | } else if (p1.Solution.PermutationType == PermutationTypes.RelativeUndirected) {
|
---|
[14544] | 390 | child = CrossRelativeUndirected(p1, p2, token);
|
---|
[14450] | 391 | } else throw new ArgumentException(string.Format("Unknown permutation type {0}", p1.Solution.PermutationType));
|
---|
| 392 |
|
---|
[14544] | 393 | if (VALIDATE && !child.Solution.Validate()) throw new ArgumentException("Cross produced invalid child");
|
---|
| 394 | return child;
|
---|
[14420] | 395 | }
|
---|
| 396 |
|
---|
[14544] | 397 | private ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> CrossAbsolute(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p1, ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p2, CancellationToken token) {
|
---|
| 398 | var cache = new HashSet<Encodings.PermutationEncoding.Permutation>(new PermutationEqualityComparer());
|
---|
[14551] | 399 | cache.Add(p1.Solution);
|
---|
| 400 | cache.Add(p2.Solution);
|
---|
| 401 |
|
---|
[14563] | 402 | var cacheHits = new Dictionary<int, int>() { { 0, 0 }, { 1, 0 }, { 2, 0 } };
|
---|
[14551] | 403 | var evaluations = 0;
|
---|
[14544] | 404 | ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> offspring = null;
|
---|
[14556] | 405 | var probe = Context.ToScope((Encodings.PermutationEncoding.Permutation)p1.Solution.Clone());
|
---|
[14551] | 406 | while (evaluations < p1.Solution.Length) {
|
---|
[14550] | 407 | Encodings.PermutationEncoding.Permutation c = null;
|
---|
[14563] | 408 | var xochoice = cacheHits.SampleRandom(Context.Random).Key;
|
---|
[14550] | 409 | switch (xochoice) {
|
---|
| 410 | case 0: c = CyclicCrossover2.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 411 | case 1: c = PartiallyMatchedCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 412 | case 2: c = UniformLikeCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 413 | }
|
---|
[14544] | 414 | if (cache.Contains(c)) {
|
---|
[14563] | 415 | cacheHits[xochoice]++;
|
---|
| 416 | if (cacheHits[xochoice] > 10) {
|
---|
| 417 | cacheHits.Remove(xochoice);
|
---|
| 418 | if (cacheHits.Count == 0) break;
|
---|
| 419 | }
|
---|
[14544] | 420 | continue;
|
---|
[14420] | 421 | }
|
---|
[14556] | 422 | probe.Solution = c;
|
---|
[14552] | 423 | Context.Evaluate(probe, token);
|
---|
[14551] | 424 | evaluations++;
|
---|
[14544] | 425 | cache.Add(c);
|
---|
| 426 | if (offspring == null || Context.IsBetter(probe, offspring)) {
|
---|
| 427 | offspring = probe;
|
---|
| 428 | if (Context.IsBetter(offspring, p1) && Context.IsBetter(offspring, p2))
|
---|
| 429 | break;
|
---|
| 430 | }
|
---|
[14450] | 431 | }
|
---|
[14551] | 432 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14552] | 433 | return offspring ?? p1;
|
---|
[14450] | 434 | }
|
---|
| 435 |
|
---|
[14544] | 436 | private ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> CrossRelativeDirected(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p1, ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p2, CancellationToken token) {
|
---|
| 437 | var cache = new HashSet<Encodings.PermutationEncoding.Permutation>(new PermutationEqualityComparer());
|
---|
[14551] | 438 | cache.Add(p1.Solution);
|
---|
| 439 | cache.Add(p2.Solution);
|
---|
| 440 |
|
---|
[14563] | 441 | var cacheHits = new Dictionary<int, int>() { { 0, 0 }, { 1, 0 }, { 2, 0 } };
|
---|
[14551] | 442 | var evaluations = 0;
|
---|
[14544] | 443 | ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> offspring = null;
|
---|
[14556] | 444 | var probe = Context.ToScope((Encodings.PermutationEncoding.Permutation)p1.Solution.Clone());
|
---|
| 445 | while (evaluations < p1.Solution.Length) {
|
---|
[14550] | 446 | Encodings.PermutationEncoding.Permutation c = null;
|
---|
[14563] | 447 | var xochoice = cacheHits.SampleRandom(Context.Random).Key;
|
---|
[14550] | 448 | switch (xochoice) {
|
---|
| 449 | case 0: c = OrderCrossover2.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 450 | case 1: c = PartiallyMatchedCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 451 | case 2: c = MaximalPreservativeCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 452 | }
|
---|
[14544] | 453 | if (cache.Contains(c)) {
|
---|
[14563] | 454 | cacheHits[xochoice]++;
|
---|
| 455 | if (cacheHits[xochoice] > 10) {
|
---|
| 456 | cacheHits.Remove(xochoice);
|
---|
| 457 | if (cacheHits.Count == 0) break;
|
---|
| 458 | }
|
---|
[14544] | 459 | continue;
|
---|
[14420] | 460 | }
|
---|
[14556] | 461 | probe.Solution = c;
|
---|
[14552] | 462 | Context.Evaluate(probe, token);
|
---|
[14551] | 463 | evaluations++;
|
---|
[14544] | 464 | cache.Add(c);
|
---|
| 465 | if (offspring == null || Context.IsBetter(probe, offspring)) {
|
---|
| 466 | offspring = probe;
|
---|
| 467 | if (Context.IsBetter(offspring, p1) && Context.IsBetter(offspring, p2))
|
---|
| 468 | break;
|
---|
| 469 | }
|
---|
[14420] | 470 | }
|
---|
[14551] | 471 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14552] | 472 | return offspring ?? p1;
|
---|
[14420] | 473 | }
|
---|
| 474 |
|
---|
[14544] | 475 | private ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> CrossRelativeUndirected(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p1, ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> p2, CancellationToken token) {
|
---|
| 476 | var cache = new HashSet<Encodings.PermutationEncoding.Permutation>(new PermutationEqualityComparer());
|
---|
[14551] | 477 | cache.Add(p1.Solution);
|
---|
| 478 | cache.Add(p2.Solution);
|
---|
| 479 |
|
---|
[14563] | 480 | var cacheHits = new Dictionary<int, int>() { { 0, 0 }, { 1, 0 }, { 2, 0 } };
|
---|
[14551] | 481 | var evaluations = 0;
|
---|
[14544] | 482 | ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> offspring = null;
|
---|
[14556] | 483 | var probe = Context.ToScope((Encodings.PermutationEncoding.Permutation)p1.Solution.Clone());
|
---|
| 484 | while (evaluations <= p1.Solution.Length) {
|
---|
[14550] | 485 | Encodings.PermutationEncoding.Permutation c = null;
|
---|
[14563] | 486 | var xochoice = cacheHits.SampleRandom(Context.Random).Key;
|
---|
[14550] | 487 | switch (xochoice) {
|
---|
| 488 | case 0: c = OrderCrossover2.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 489 | case 1: c = EdgeRecombinationCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 490 | case 2: c = MaximalPreservativeCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
| 491 | }
|
---|
[14544] | 492 | if (cache.Contains(c)) {
|
---|
[14563] | 493 | cacheHits[xochoice]++;
|
---|
| 494 | if (cacheHits[xochoice] > 10) {
|
---|
| 495 | cacheHits.Remove(xochoice);
|
---|
| 496 | if (cacheHits.Count == 0) break;
|
---|
| 497 | }
|
---|
[14544] | 498 | continue;
|
---|
[14420] | 499 | }
|
---|
[14556] | 500 | probe.Solution = c;
|
---|
[14552] | 501 | Context.Evaluate(probe, token);
|
---|
[14551] | 502 | evaluations++;
|
---|
[14544] | 503 | cache.Add(c);
|
---|
| 504 | if (offspring == null || Context.IsBetter(probe, offspring)) {
|
---|
| 505 | offspring = probe;
|
---|
| 506 | if (Context.IsBetter(offspring, p1) && Context.IsBetter(offspring, p2))
|
---|
| 507 | break;
|
---|
| 508 | }
|
---|
[14420] | 509 | }
|
---|
[14551] | 510 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14552] | 511 | return offspring ?? p1;
|
---|
[14420] | 512 | }
|
---|
| 513 |
|
---|
[14544] | 514 | protected override ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> Link(ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> a, ISingleObjectiveSolutionScope<Encodings.PermutationEncoding.Permutation> b, CancellationToken token, bool delink = false) {
|
---|
[14450] | 515 | double quality;
|
---|
[14552] | 516 | return Context.ToScope(Relink(Context.Random, a.Solution, b.Solution, Context.Evaluate, token, delink, out quality));
|
---|
[14450] | 517 | }
|
---|
| 518 |
|
---|
[14552] | 519 | public Encodings.PermutationEncoding.Permutation Relink(IRandom random, Encodings.PermutationEncoding.Permutation p1, Encodings.PermutationEncoding.Permutation p2, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, bool delink, out double best) {
|
---|
[14450] | 520 | if (p1.PermutationType != p2.PermutationType) throw new ArgumentException(string.Format("Unequal permutation types {0} and {1}", p1.PermutationType, p2.PermutationType));
|
---|
| 521 | switch (p1.PermutationType) {
|
---|
| 522 | case PermutationTypes.Absolute:
|
---|
[14552] | 523 | return delink ? DelinkSwap(random, p1, p2, eval, token, out best) : RelinkSwap(random, p1, p2, eval, token, out best);
|
---|
[14450] | 524 | case PermutationTypes.RelativeDirected:
|
---|
[14552] | 525 | return RelinkShift(random, p1, p2, eval, token, delink, out best);
|
---|
[14450] | 526 | case PermutationTypes.RelativeUndirected:
|
---|
[14556] | 527 | return delink ? DelinkOpt(random, p1, p2, eval, token, out best) : RelinkOpt(random, p1, p2, eval, token, out best);
|
---|
[14450] | 528 | default: throw new ArgumentException(string.Format("Unknown permutation type {0}", p1.PermutationType));
|
---|
| 529 | }
|
---|
| 530 | }
|
---|
| 531 |
|
---|
[14552] | 532 | public Encodings.PermutationEncoding.Permutation RelinkSwap(IRandom random, Encodings.PermutationEncoding.Permutation p1, Encodings.PermutationEncoding.Permutation p2, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, out double best) {
|
---|
| 533 | var maximization = Context.Maximization;
|
---|
[14453] | 534 | var evaluations = 0;
|
---|
[14450] | 535 | var child = (Encodings.PermutationEncoding.Permutation)p1.Clone();
|
---|
| 536 |
|
---|
| 537 | best = double.NaN;
|
---|
| 538 | Encodings.PermutationEncoding.Permutation bestChild = null;
|
---|
| 539 |
|
---|
| 540 | var options = Enumerable.Range(0, child.Length).Where(x => child[x] != p2[x]).ToList();
|
---|
| 541 | var invChild = new int[child.Length];
|
---|
| 542 | for (var i = 0; i < child.Length; i++) invChild[child[i]] = i;
|
---|
[14550] | 543 |
|
---|
[14450] | 544 | while (options.Count > 0) {
|
---|
| 545 | int bestOption = -1;
|
---|
| 546 | var bestChange = double.NaN;
|
---|
| 547 | for (var j = 0; j < options.Count; j++) {
|
---|
| 548 | var idx = options[j];
|
---|
| 549 | if (child[idx] == p2[idx]) {
|
---|
| 550 | options.RemoveAt(j);
|
---|
| 551 | j--;
|
---|
| 552 | continue;
|
---|
[14420] | 553 | }
|
---|
[14450] | 554 | Swap(child, invChild[p2[idx]], idx);
|
---|
[14552] | 555 | var moveF = eval(child, token);
|
---|
[14453] | 556 | evaluations++;
|
---|
[14456] | 557 | if (FitnessComparer.IsBetter(maximization, moveF, bestChange)) {
|
---|
[14450] | 558 | bestChange = moveF;
|
---|
| 559 | bestOption = j;
|
---|
[14420] | 560 | }
|
---|
[14450] | 561 | // undo
|
---|
| 562 | Swap(child, invChild[p2[idx]], idx);
|
---|
[14420] | 563 | }
|
---|
[14450] | 564 | if (!double.IsNaN(bestChange)) {
|
---|
| 565 | var idx1 = options[bestOption];
|
---|
| 566 | var idx2 = invChild[p2[idx1]];
|
---|
| 567 | Swap(child, idx1, idx2);
|
---|
| 568 | invChild[child[idx1]] = idx1;
|
---|
| 569 | invChild[child[idx2]] = idx2;
|
---|
[14456] | 570 | if (FitnessComparer.IsBetter(maximization, bestChange, best)) {
|
---|
[14450] | 571 | if (Dist(child, p2) > 0) {
|
---|
| 572 | best = bestChange;
|
---|
| 573 | bestChild = (Encodings.PermutationEncoding.Permutation)child.Clone();
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 | options.RemoveAt(bestOption);
|
---|
[14420] | 577 | }
|
---|
| 578 | }
|
---|
[14456] | 579 | if (bestChild == null) {
|
---|
[14552] | 580 | best = eval(child, token);
|
---|
[14456] | 581 | evaluations++;
|
---|
| 582 | }
|
---|
[14453] | 583 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14450] | 584 |
|
---|
| 585 | if (VALIDATE && bestChild != null && !bestChild.Validate()) throw new ArgumentException("Relinking produced invalid child");
|
---|
| 586 | if (VALIDATE && Dist(child, p2) > 0) throw new InvalidOperationException("Child is not equal to p2 after relinking");
|
---|
[14456] | 587 |
|
---|
[14450] | 588 | return bestChild ?? child;
|
---|
[14420] | 589 | }
|
---|
[14450] | 590 |
|
---|
[14552] | 591 | public Encodings.PermutationEncoding.Permutation DelinkSwap(IRandom random, Encodings.PermutationEncoding.Permutation p1, Encodings.PermutationEncoding.Permutation p2, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, out double best) {
|
---|
| 592 | var maximization = Context.Maximization;
|
---|
[14453] | 593 | var evaluations = 0;
|
---|
[14450] | 594 | var child = (Encodings.PermutationEncoding.Permutation)p1.Clone();
|
---|
| 595 |
|
---|
| 596 | best = double.NaN;
|
---|
| 597 | Encodings.PermutationEncoding.Permutation bestChild = null;
|
---|
| 598 |
|
---|
[14550] | 599 | var options = Enumerable.Range(0, child.Length).Where(x => child[x] == p2[x]).ToList();
|
---|
| 600 |
|
---|
| 601 | while (options.Count > 0) {
|
---|
| 602 | int bestOption = -1;
|
---|
| 603 | int bestCompanion = -1;
|
---|
| 604 | var bestChange = double.NaN;
|
---|
| 605 | for (var j = 0; j < options.Count; j++) {
|
---|
| 606 | var idx = options[j];
|
---|
| 607 | if (child[idx] != p2[idx]) {
|
---|
| 608 | options.RemoveAt(j);
|
---|
| 609 | j--;
|
---|
| 610 | continue;
|
---|
| 611 | }
|
---|
| 612 | for (var k = 0; k < child.Length; k++) {
|
---|
| 613 | if (k == idx) continue;
|
---|
| 614 | Swap(child, k, idx);
|
---|
[14552] | 615 | var moveF = eval(child, token);
|
---|
[14550] | 616 | evaluations++;
|
---|
| 617 | if (FitnessComparer.IsBetter(maximization, moveF, bestChange)) {
|
---|
| 618 | bestChange = moveF;
|
---|
| 619 | bestOption = j;
|
---|
| 620 | bestCompanion = k;
|
---|
| 621 | }
|
---|
| 622 | // undo
|
---|
| 623 | Swap(child, k, idx);
|
---|
| 624 | }
|
---|
| 625 | }
|
---|
| 626 | if (!double.IsNaN(bestChange)) {
|
---|
| 627 | var idx1 = options[bestOption];
|
---|
| 628 | Swap(child, idx1, bestCompanion);
|
---|
| 629 | if (FitnessComparer.IsBetter(maximization, bestChange, best)) {
|
---|
| 630 | if (!Eq(child, p2)) {
|
---|
| 631 | best = bestChange;
|
---|
| 632 | bestChild = (Encodings.PermutationEncoding.Permutation)child.Clone();
|
---|
| 633 | }
|
---|
| 634 | }
|
---|
| 635 | options.RemoveAt(bestOption);
|
---|
| 636 | }
|
---|
| 637 | }
|
---|
| 638 | if (bestChild == null) {
|
---|
[14552] | 639 | best = eval(child, token);
|
---|
[14550] | 640 | evaluations++;
|
---|
| 641 | }
|
---|
| 642 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
| 643 |
|
---|
[14551] | 644 | if (VALIDATE && bestChild != null && !bestChild.Validate()) throw new ArgumentException("Delinking produced invalid child");
|
---|
[14550] | 645 |
|
---|
| 646 | return bestChild ?? child;
|
---|
| 647 | }
|
---|
| 648 |
|
---|
[14552] | 649 | public Encodings.PermutationEncoding.Permutation RelinkShift(IRandom random, Encodings.PermutationEncoding.Permutation p1, Encodings.PermutationEncoding.Permutation p2, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, bool delink, out double best) {
|
---|
| 650 | var maximization = Context.Maximization;
|
---|
[14550] | 651 | var evaluations = 0;
|
---|
| 652 | var child = (Encodings.PermutationEncoding.Permutation)p1.Clone();
|
---|
| 653 |
|
---|
| 654 | best = double.NaN;
|
---|
| 655 | Encodings.PermutationEncoding.Permutation bestChild = null;
|
---|
| 656 |
|
---|
[14450] | 657 | var invChild = new int[child.Length];
|
---|
| 658 | for (var i = 0; i < child.Length; i++) invChild[child[i]] = i;
|
---|
| 659 |
|
---|
| 660 | var bestChange = double.NaN;
|
---|
| 661 | do {
|
---|
| 662 | int bestFrom = -1, bestTo = -1;
|
---|
| 663 | bestChange = double.NaN;
|
---|
| 664 | for (var j = 0; j < child.Length; j++) {
|
---|
| 665 | var c = invChild[p2[j]];
|
---|
| 666 | var n = invChild[p2.GetCircular(j + 1)];
|
---|
| 667 | if (n - c == 1 || c == child.Length - 1 && n == 0) continue;
|
---|
| 668 |
|
---|
| 669 | if (c < n) Shift(child, from: n, to: c + 1);
|
---|
| 670 | else Shift(child, from: c, to: n);
|
---|
[14552] | 671 | var moveF = eval(child, token);
|
---|
[14453] | 672 | evaluations++;
|
---|
[14456] | 673 | if (FitnessComparer.IsBetter(maximization, moveF, bestChange)) {
|
---|
[14450] | 674 | bestChange = moveF;
|
---|
| 675 | bestFrom = c < n ? n : c;
|
---|
| 676 | bestTo = c < n ? c + 1 : n;
|
---|
| 677 | }
|
---|
| 678 | // undo
|
---|
| 679 | if (c < n) Shift(child, from: c + 1, to: n);
|
---|
| 680 | else Shift(child, from: n, to: c);
|
---|
| 681 | }
|
---|
| 682 | if (!double.IsNaN(bestChange)) {
|
---|
| 683 | Shift(child, bestFrom, bestTo);
|
---|
| 684 | for (var i = Math.Min(bestFrom, bestTo); i < Math.Max(bestFrom, bestTo); i++) invChild[child[i]] = i;
|
---|
[14456] | 685 | if (FitnessComparer.IsBetter(maximization, bestChange, best)) {
|
---|
[14450] | 686 | best = bestChange;
|
---|
| 687 | bestChild = (Encodings.PermutationEncoding.Permutation)child.Clone();
|
---|
| 688 | }
|
---|
| 689 | }
|
---|
| 690 | } while (!double.IsNaN(bestChange));
|
---|
| 691 |
|
---|
[14456] | 692 | if (bestChild == null) {
|
---|
[14552] | 693 | best = eval(child, token);
|
---|
[14456] | 694 | evaluations++;
|
---|
| 695 | }
|
---|
[14453] | 696 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
[14456] | 697 |
|
---|
| 698 | if (VALIDATE && bestChild != null && !bestChild.Validate()) throw new ArgumentException("Relinking produced invalid child");
|
---|
[14450] | 699 | if (VALIDATE && Dist(child, p2) > 0) throw new InvalidOperationException("Child is not equal to p2 after relinking");
|
---|
[14456] | 700 |
|
---|
| 701 | return bestChild ?? child;
|
---|
[14450] | 702 | }
|
---|
| 703 |
|
---|
[14556] | 704 | public Encodings.PermutationEncoding.Permutation RelinkOpt(IRandom random, Encodings.PermutationEncoding.Permutation p1, Encodings.PermutationEncoding.Permutation p2, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, out double best) {
|
---|
[14552] | 705 | var maximization = Context.Maximization;
|
---|
[14453] | 706 | var evaluations = 0;
|
---|
[14450] | 707 | var child = (Encodings.PermutationEncoding.Permutation)p1.Clone();
|
---|
| 708 |
|
---|
| 709 | best = double.NaN;
|
---|
| 710 | Encodings.PermutationEncoding.Permutation bestChild = null;
|
---|
| 711 |
|
---|
| 712 | var invChild = new int[child.Length];
|
---|
| 713 | var invP2 = new int[child.Length];
|
---|
| 714 | for (var i = 0; i < child.Length; i++) {
|
---|
| 715 | invChild[child[i]] = i;
|
---|
| 716 | invP2[p2[i]] = i;
|
---|
| 717 | }
|
---|
| 718 |
|
---|
| 719 | var bestChange = double.NaN;
|
---|
| 720 | var moveQueue = new Queue<Tuple<int, int>>();
|
---|
| 721 | var undoStack = new Stack<Tuple<int, int>>();
|
---|
| 722 | do {
|
---|
| 723 | Queue<Tuple<int, int>> bestQueue = null;
|
---|
| 724 | bestChange = double.NaN;
|
---|
| 725 | for (var j = 0; j < p2.Length; j++) {
|
---|
| 726 | if (IsUndirectedEdge(invChild, p2[j], p2.GetCircular(j + 1))) continue;
|
---|
| 727 |
|
---|
| 728 | var a = invChild[p2[j]];
|
---|
| 729 | var b = invChild[p2.GetCircular(j + 1)];
|
---|
| 730 | if (a > b) { var h = a; a = b; b = h; }
|
---|
| 731 | var aprev = a - 1;
|
---|
| 732 | var bprev = b - 1;
|
---|
| 733 | while (IsUndirectedEdge(invP2, child.GetCircular(aprev), child.GetCircular(aprev + 1))) {
|
---|
| 734 | aprev--;
|
---|
| 735 | }
|
---|
| 736 | while (IsUndirectedEdge(invP2, child.GetCircular(bprev), child.GetCircular(bprev + 1))) {
|
---|
| 737 | bprev--;
|
---|
| 738 | }
|
---|
| 739 | var bnext = b + 1;
|
---|
| 740 | var anext = a + 1;
|
---|
| 741 | while (IsUndirectedEdge(invP2, child.GetCircular(bnext - 1), child.GetCircular(bnext))) {
|
---|
| 742 | bnext++;
|
---|
| 743 | }
|
---|
| 744 | while (IsUndirectedEdge(invP2, child.GetCircular(anext - 1), child.GetCircular(anext))) {
|
---|
| 745 | anext++;
|
---|
| 746 | }
|
---|
| 747 | aprev++; bprev++; anext--; bnext--;
|
---|
| 748 |
|
---|
| 749 | if (aprev < a && bnext > b) {
|
---|
| 750 | if (aprev < 0) {
|
---|
| 751 | moveQueue.Enqueue(Tuple.Create(a + 1, bnext));
|
---|
| 752 | moveQueue.Enqueue(Tuple.Create(a + 1, a + 1 + (bnext - b)));
|
---|
| 753 | } else {
|
---|
| 754 | moveQueue.Enqueue(Tuple.Create(aprev, b - 1));
|
---|
| 755 | moveQueue.Enqueue(Tuple.Create(b - 1 - (a - aprev), b - 1));
|
---|
| 756 | }
|
---|
| 757 | } else if (aprev < a && bnext == b && bprev == b) {
|
---|
| 758 | moveQueue.Enqueue(Tuple.Create(a + 1, b));
|
---|
| 759 | } else if (aprev < a && bprev < b) {
|
---|
| 760 | moveQueue.Enqueue(Tuple.Create(a + 1, b));
|
---|
| 761 | } else if (aprev == a && anext == a && bnext > b) {
|
---|
| 762 | moveQueue.Enqueue(Tuple.Create(a, b - 1));
|
---|
| 763 | } else if (aprev == a && anext == a && bnext == b && bprev == b) {
|
---|
| 764 | moveQueue.Enqueue(Tuple.Create(a, b - 1));
|
---|
| 765 | } else if (aprev == a && anext == a && bprev < b) {
|
---|
| 766 | moveQueue.Enqueue(Tuple.Create(a + 1, b));
|
---|
| 767 | } else if (anext > a && bnext > b) {
|
---|
| 768 | moveQueue.Enqueue(Tuple.Create(a, b - 1));
|
---|
| 769 | } else if (anext > a && bnext == b && bprev == b) {
|
---|
| 770 | moveQueue.Enqueue(Tuple.Create(a, b - 1));
|
---|
| 771 | } else /*if (anext > a && bprev < b)*/ {
|
---|
| 772 | moveQueue.Enqueue(Tuple.Create(a, bprev - 1));
|
---|
| 773 | moveQueue.Enqueue(Tuple.Create(bprev, b));
|
---|
| 774 | }
|
---|
| 775 |
|
---|
| 776 | while (moveQueue.Count > 0) {
|
---|
| 777 | var m = moveQueue.Dequeue();
|
---|
| 778 | Opt(child, m.Item1, m.Item2);
|
---|
| 779 | undoStack.Push(m);
|
---|
| 780 | }
|
---|
[14552] | 781 | var moveF = eval(child, token);
|
---|
[14453] | 782 | evaluations++;
|
---|
[14456] | 783 | if (FitnessComparer.IsBetter(maximization, moveF, bestChange)) {
|
---|
[14450] | 784 | bestChange = moveF;
|
---|
| 785 | bestQueue = new Queue<Tuple<int, int>>(undoStack.Reverse());
|
---|
| 786 | }
|
---|
| 787 | // undo
|
---|
| 788 | while (undoStack.Count > 0) {
|
---|
| 789 | var m = undoStack.Pop();
|
---|
| 790 | Opt(child, m.Item1, m.Item2);
|
---|
| 791 | }
|
---|
| 792 | }
|
---|
| 793 | if (!double.IsNaN(bestChange)) {
|
---|
| 794 | while (bestQueue.Count > 0) {
|
---|
| 795 | var m = bestQueue.Dequeue();
|
---|
| 796 | Opt(child, m.Item1, m.Item2);
|
---|
[14556] | 797 | for (var i = m.Item1; i <= m.Item2; i++) invChild[child[i]] = i;
|
---|
[14450] | 798 | }
|
---|
[14456] | 799 | if (FitnessComparer.IsBetter(maximization, bestChange, best)) {
|
---|
[14450] | 800 | best = bestChange;
|
---|
| 801 | bestChild = (Encodings.PermutationEncoding.Permutation)child.Clone();
|
---|
| 802 | }
|
---|
| 803 | }
|
---|
| 804 | } while (!double.IsNaN(bestChange));
|
---|
| 805 |
|
---|
[14456] | 806 | if (bestChild == null) {
|
---|
[14552] | 807 | best = eval(child, token);
|
---|
[14456] | 808 | evaluations++;
|
---|
| 809 | }
|
---|
[14453] | 810 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
| 811 |
|
---|
[14456] | 812 | if (VALIDATE && bestChild != null && !bestChild.Validate()) throw new ArgumentException("Relinking produced invalid child");
|
---|
[14450] | 813 | if (VALIDATE && Dist(child, p2) > 0) throw new InvalidOperationException("Child is not equal to p2 after relinking");
|
---|
[14456] | 814 | return bestChild ?? child;
|
---|
[14450] | 815 | }
|
---|
| 816 |
|
---|
[14556] | 817 | public Encodings.PermutationEncoding.Permutation DelinkOpt(IRandom random, Encodings.PermutationEncoding.Permutation p1, Encodings.PermutationEncoding.Permutation p2, Func<Encodings.PermutationEncoding.Permutation, CancellationToken, double> eval, CancellationToken token, out double best) {
|
---|
| 818 | var evaluations = 0;
|
---|
| 819 | var child = (Encodings.PermutationEncoding.Permutation)p1.Clone();
|
---|
| 820 |
|
---|
| 821 | best = double.NaN;
|
---|
| 822 | Encodings.PermutationEncoding.Permutation bestChild = null;
|
---|
| 823 |
|
---|
| 824 | var invChild = new int[child.Length];
|
---|
| 825 | var invP2 = new int[child.Length];
|
---|
| 826 | for (var i = 0; i < child.Length; i++) {
|
---|
| 827 | invChild[child[i]] = i;
|
---|
| 828 | invP2[p2[i]] = i;
|
---|
| 829 | }
|
---|
| 830 |
|
---|
| 831 | var order = Enumerable.Range(0, p2.Length).Where(x => IsUndirectedEdge(invP2, child[x], child.GetCircular(x + 1))).Shuffle(Context.Random).ToList();
|
---|
| 832 | while (order.Count > 0) {
|
---|
| 833 | var idx = order.First();
|
---|
| 834 | var bestChange = double.NaN;
|
---|
| 835 | var bestIdx = -1;
|
---|
| 836 | for (var m = 0; m < p2.Length; m++) {
|
---|
| 837 | if (Math.Abs(m - idx) <= 1 || Math.Abs(m - idx) >= p2.Length - 2) continue;
|
---|
| 838 | if (m < idx) {
|
---|
| 839 | if (IsUndirectedEdge(invP2, child.GetCircular(m - 1), child[idx])
|
---|
| 840 | || IsUndirectedEdge(invP2, child[m], child.GetCircular(idx + 1))) continue;
|
---|
| 841 | Opt(child, m, idx);
|
---|
| 842 | var moveF = eval(child, token);
|
---|
| 843 | evaluations++;
|
---|
| 844 | if (Context.IsBetter(moveF, bestChange)) {
|
---|
| 845 | bestChange = moveF;
|
---|
| 846 | bestIdx = m;
|
---|
| 847 | }
|
---|
| 848 | // undo
|
---|
| 849 | Opt(child, m, idx);
|
---|
| 850 | } else {
|
---|
| 851 | if (IsUndirectedEdge(invP2, child[idx], child[m])
|
---|
| 852 | || IsUndirectedEdge(invP2, child.GetCircular(idx + 1), child.GetCircular(m + 1))) continue;
|
---|
| 853 | Opt(child, idx + 1, m);
|
---|
| 854 | var moveF = eval(child, token);
|
---|
| 855 | evaluations++;
|
---|
| 856 | if (Context.IsBetter(moveF, bestChange)) {
|
---|
| 857 | bestChange = moveF;
|
---|
| 858 | bestIdx = m;
|
---|
| 859 | }
|
---|
| 860 | // undo
|
---|
| 861 | Opt(child, idx + 1, m);
|
---|
| 862 | }
|
---|
| 863 | }
|
---|
| 864 | if (bestIdx >= 0) {
|
---|
| 865 | if (bestIdx > idx)
|
---|
| 866 | Opt(child, idx + 1, bestIdx);
|
---|
| 867 | else Opt(child, bestIdx, idx);
|
---|
| 868 | for (var i = Math.Min(idx, bestIdx); i <= Math.Max(idx, bestIdx); i++)
|
---|
| 869 | invChild[child[i]] = i;
|
---|
| 870 |
|
---|
| 871 | order = Enumerable.Range(0, p2.Length).Where(x => IsUndirectedEdge(invP2, child[x], child.GetCircular(x + 1))).Shuffle(Context.Random).ToList();
|
---|
| 872 | if (Context.IsBetter(bestChange, best)) {
|
---|
| 873 | best = bestChange;
|
---|
| 874 | bestChild = (Encodings.PermutationEncoding.Permutation)child.Clone();
|
---|
| 875 | }
|
---|
| 876 | }
|
---|
| 877 | }
|
---|
| 878 |
|
---|
| 879 | if (bestChild == null) {
|
---|
| 880 | best = eval(child, token);
|
---|
| 881 | evaluations++;
|
---|
| 882 | }
|
---|
| 883 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
| 884 |
|
---|
| 885 | if (VALIDATE && bestChild != null && !bestChild.Validate()) throw new ArgumentException("Delinking produced invalid child");
|
---|
| 886 | if (VALIDATE && Dist(child, p2) < 1) throw new InvalidOperationException("Child is not different from p2 after delinking");
|
---|
| 887 | return bestChild ?? child;
|
---|
| 888 | }
|
---|
| 889 |
|
---|
[14450] | 890 | private static bool IsUndirectedEdge(int[] invP, int a, int b) {
|
---|
| 891 | var d = Math.Abs(invP[a] - invP[b]);
|
---|
| 892 | return d == 1 || d == invP.Length - 1;
|
---|
| 893 | }
|
---|
| 894 |
|
---|
| 895 | private static void Swap(Encodings.PermutationEncoding.Permutation child, int from, int to) {
|
---|
| 896 | Swap2Manipulator.Apply(child, from, to);
|
---|
| 897 | }
|
---|
| 898 |
|
---|
| 899 | private static void Shift(Encodings.PermutationEncoding.Permutation child, int from, int to) {
|
---|
| 900 | TranslocationManipulator.Apply(child, from, from, to);
|
---|
| 901 | }
|
---|
| 902 |
|
---|
[14556] | 903 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
[14450] | 904 | private static void Opt(Encodings.PermutationEncoding.Permutation child, int from, int to) {
|
---|
[14556] | 905 | if (from > to) child.Reverse(to, from - to + 1);
|
---|
| 906 | else child.Reverse(from, to - from + 1);
|
---|
[14450] | 907 | }
|
---|
[14420] | 908 | }
|
---|
| 909 | }
|
---|