1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Runtime.CompilerServices;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
28 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
29 | using HeuristicLab.Analysis;
|
---|
30 | using HeuristicLab.Common;
|
---|
31 | using HeuristicLab.Core;
|
---|
32 | using HeuristicLab.Data;
|
---|
33 | using HeuristicLab.Optimization;
|
---|
34 | using HeuristicLab.Parameters;
|
---|
35 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis;
|
---|
37 | using HeuristicLab.Random;
|
---|
38 | using ExecutionContext = HeuristicLab.Core.ExecutionContext;
|
---|
39 |
|
---|
40 | namespace HeuristicLab.Algorithms.MemPR {
|
---|
41 | [Item("MemPRContext", "Abstract base class for MemPR contexts.")]
|
---|
42 | [StorableClass]
|
---|
43 | public abstract class MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext> : ParameterizedNamedItem,
|
---|
44 | IPopulationBasedHeuristicAlgorithmContext<TProblem, TSolution>, ISolutionModelContext<TSolution>, IEvaluationServiceContext<TSolution>
|
---|
45 | where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem
|
---|
46 | where TSolution : class, IItem
|
---|
47 | where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>
|
---|
48 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
|
---|
49 |
|
---|
50 | private IExecutionContext parent;
|
---|
51 | public IExecutionContext Parent {
|
---|
52 | get { return parent; }
|
---|
53 | set { parent = value; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | [Storable]
|
---|
57 | private IScope scope;
|
---|
58 | public IScope Scope {
|
---|
59 | get { return scope; }
|
---|
60 | private set { scope = value; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | IKeyedItemCollection<string, IParameter> IExecutionContext.Parameters {
|
---|
64 | get { return Parameters; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | [Storable]
|
---|
68 | private IValueParameter<TProblem> problem;
|
---|
69 | public TProblem Problem {
|
---|
70 | get { return problem.Value; }
|
---|
71 | set { problem.Value = value; }
|
---|
72 | }
|
---|
73 | public bool Maximization {
|
---|
74 | get { return ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value; }
|
---|
75 | }
|
---|
76 |
|
---|
77 | [Storable]
|
---|
78 | private IValueParameter<BoolValue> initialized;
|
---|
79 | public bool Initialized {
|
---|
80 | get { return initialized.Value.Value; }
|
---|
81 | set { initialized.Value.Value = value; }
|
---|
82 | }
|
---|
83 |
|
---|
84 | [Storable]
|
---|
85 | private IValueParameter<IntValue> iterations;
|
---|
86 | public int Iterations {
|
---|
87 | get { return iterations.Value.Value; }
|
---|
88 | set { iterations.Value.Value = value; }
|
---|
89 | }
|
---|
90 |
|
---|
91 | [Storable]
|
---|
92 | private IValueParameter<IntValue> evaluatedSolutions;
|
---|
93 | public int EvaluatedSolutions {
|
---|
94 | get { return evaluatedSolutions.Value.Value; }
|
---|
95 | set { evaluatedSolutions.Value.Value = value; }
|
---|
96 | }
|
---|
97 |
|
---|
98 | [Storable]
|
---|
99 | private IValueParameter<DoubleValue> bestQuality;
|
---|
100 | public double BestQuality {
|
---|
101 | get { return bestQuality.Value.Value; }
|
---|
102 | set { bestQuality.Value.Value = value; }
|
---|
103 | }
|
---|
104 |
|
---|
105 | [Storable]
|
---|
106 | private IValueParameter<TSolution> bestSolution;
|
---|
107 | public TSolution BestSolution {
|
---|
108 | get { return bestSolution.Value; }
|
---|
109 | set { bestSolution.Value = value; }
|
---|
110 | }
|
---|
111 |
|
---|
112 | [Storable]
|
---|
113 | private IValueParameter<IntValue> localSearchEvaluations;
|
---|
114 | public int LocalSearchEvaluations {
|
---|
115 | get { return localSearchEvaluations.Value.Value; }
|
---|
116 | set { localSearchEvaluations.Value.Value = value; }
|
---|
117 | }
|
---|
118 |
|
---|
119 | [Storable]
|
---|
120 | private IValueParameter<DoubleValue> localOptimaLevel;
|
---|
121 | public double LocalOptimaLevel {
|
---|
122 | get { return localOptimaLevel.Value.Value; }
|
---|
123 | set { localOptimaLevel.Value.Value = value; }
|
---|
124 | }
|
---|
125 |
|
---|
126 | [Storable]
|
---|
127 | private IValueParameter<IntValue> byBreeding;
|
---|
128 | public int ByBreeding {
|
---|
129 | get { return byBreeding.Value.Value; }
|
---|
130 | set { byBreeding.Value.Value = value; }
|
---|
131 | }
|
---|
132 |
|
---|
133 | [Storable]
|
---|
134 | private IValueParameter<IntValue> byRelinking;
|
---|
135 | public int ByRelinking {
|
---|
136 | get { return byRelinking.Value.Value; }
|
---|
137 | set { byRelinking.Value.Value = value; }
|
---|
138 | }
|
---|
139 |
|
---|
140 | [Storable]
|
---|
141 | private IValueParameter<IntValue> byDelinking;
|
---|
142 | public int ByDelinking {
|
---|
143 | get { return byDelinking.Value.Value; }
|
---|
144 | set { byDelinking.Value.Value = value; }
|
---|
145 | }
|
---|
146 |
|
---|
147 | [Storable]
|
---|
148 | private IValueParameter<IntValue> bySampling;
|
---|
149 | public int BySampling {
|
---|
150 | get { return bySampling.Value.Value; }
|
---|
151 | set { bySampling.Value.Value = value; }
|
---|
152 | }
|
---|
153 |
|
---|
154 | [Storable]
|
---|
155 | private IValueParameter<IntValue> byHillclimbing;
|
---|
156 | public int ByHillclimbing {
|
---|
157 | get { return byHillclimbing.Value.Value; }
|
---|
158 | set { byHillclimbing.Value.Value = value; }
|
---|
159 | }
|
---|
160 |
|
---|
161 | [Storable]
|
---|
162 | private IValueParameter<IntValue> byAdaptivewalking;
|
---|
163 | public int ByAdaptivewalking {
|
---|
164 | get { return byAdaptivewalking.Value.Value; }
|
---|
165 | set { byAdaptivewalking.Value.Value = value; }
|
---|
166 | }
|
---|
167 |
|
---|
168 | [Storable]
|
---|
169 | private IValueParameter<IRandom> random;
|
---|
170 | public IRandom Random {
|
---|
171 | get { return random.Value; }
|
---|
172 | set { random.Value = value; }
|
---|
173 | }
|
---|
174 |
|
---|
175 | public IEnumerable<ISingleObjectiveSolutionScope<TSolution>> Population {
|
---|
176 | get { return scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>(); }
|
---|
177 | }
|
---|
178 | public void AddToPopulation(ISingleObjectiveSolutionScope<TSolution> solScope) {
|
---|
179 | scope.SubScopes.Add(solScope);
|
---|
180 | }
|
---|
181 | public void ReplaceAtPopulation(int index, ISingleObjectiveSolutionScope<TSolution> solScope) {
|
---|
182 | scope.SubScopes[index] = solScope;
|
---|
183 | }
|
---|
184 | public ISingleObjectiveSolutionScope<TSolution> AtPopulation(int index) {
|
---|
185 | return scope.SubScopes[index] as ISingleObjectiveSolutionScope<TSolution>;
|
---|
186 | }
|
---|
187 | public void SortPopulation() {
|
---|
188 | scope.SubScopes.Replace(scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>().OrderBy(x => Maximization ? -x.Fitness : x.Fitness).ToList());
|
---|
189 | }
|
---|
190 | public int PopulationCount {
|
---|
191 | get { return scope.SubScopes.Count; }
|
---|
192 | }
|
---|
193 |
|
---|
194 | [Storable]
|
---|
195 | private IConfidenceRegressionModel breedingPerformanceModel;
|
---|
196 | public IConfidenceRegressionModel BreedingPerformanceModel {
|
---|
197 | get { return breedingPerformanceModel; }
|
---|
198 | }
|
---|
199 | [Storable]
|
---|
200 | private List<Tuple<double, double, double, double>> breedingStat;
|
---|
201 | public IEnumerable<Tuple<double, double, double, double>> BreedingStat {
|
---|
202 | get { return breedingStat; }
|
---|
203 | }
|
---|
204 | [Storable]
|
---|
205 | private IConfidenceRegressionModel relinkingPerformanceModel;
|
---|
206 | public IConfidenceRegressionModel RelinkingPerformanceModel {
|
---|
207 | get { return relinkingPerformanceModel; }
|
---|
208 | }
|
---|
209 | [Storable]
|
---|
210 | private List<Tuple<double, double, double, double>> relinkingStat;
|
---|
211 | public IEnumerable<Tuple<double, double, double, double>> RelinkingStat {
|
---|
212 | get { return relinkingStat; }
|
---|
213 | }
|
---|
214 | [Storable]
|
---|
215 | private IConfidenceRegressionModel delinkingPerformanceModel;
|
---|
216 | public IConfidenceRegressionModel DelinkingPerformanceModel {
|
---|
217 | get { return delinkingPerformanceModel; }
|
---|
218 | }
|
---|
219 | [Storable]
|
---|
220 | private List<Tuple<double, double, double, double>> delinkingStat;
|
---|
221 | public IEnumerable<Tuple<double, double, double, double>> DelinkingStat {
|
---|
222 | get { return delinkingStat; }
|
---|
223 | }
|
---|
224 | [Storable]
|
---|
225 | private IConfidenceRegressionModel samplingPerformanceModel;
|
---|
226 | public IConfidenceRegressionModel SamplingPerformanceModel {
|
---|
227 | get { return samplingPerformanceModel; }
|
---|
228 | }
|
---|
229 | [Storable]
|
---|
230 | private List<Tuple<double, double>> samplingStat;
|
---|
231 | public IEnumerable<Tuple<double, double>> SamplingStat {
|
---|
232 | get { return samplingStat; }
|
---|
233 | }
|
---|
234 | [Storable]
|
---|
235 | private IConfidenceRegressionModel hillclimbingPerformanceModel;
|
---|
236 | public IConfidenceRegressionModel HillclimbingPerformanceModel {
|
---|
237 | get { return hillclimbingPerformanceModel; }
|
---|
238 | }
|
---|
239 | [Storable]
|
---|
240 | private List<Tuple<double, double>> hillclimbingStat;
|
---|
241 | public IEnumerable<Tuple<double, double>> HillclimbingStat {
|
---|
242 | get { return hillclimbingStat; }
|
---|
243 | }
|
---|
244 | [Storable]
|
---|
245 | private IConfidenceRegressionModel adaptiveWalkPerformanceModel;
|
---|
246 | public IConfidenceRegressionModel AdaptiveWalkPerformanceModel {
|
---|
247 | get { return adaptiveWalkPerformanceModel; }
|
---|
248 | }
|
---|
249 | [Storable]
|
---|
250 | private List<Tuple<double, double>> adaptivewalkingStat;
|
---|
251 | public IEnumerable<Tuple<double, double>> AdaptivewalkingStat {
|
---|
252 | get { return adaptivewalkingStat; }
|
---|
253 | }
|
---|
254 |
|
---|
255 | [Storable]
|
---|
256 | public ISolutionModel<TSolution> Model { get; set; }
|
---|
257 |
|
---|
258 | [StorableConstructor]
|
---|
259 | protected MemPRPopulationContext(bool deserializing) : base(deserializing) { }
|
---|
260 | protected MemPRPopulationContext(MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner)
|
---|
261 | : base(original, cloner) {
|
---|
262 | scope = cloner.Clone(original.scope);
|
---|
263 | problem = cloner.Clone(original.problem);
|
---|
264 | initialized = cloner.Clone(original.initialized);
|
---|
265 | iterations = cloner.Clone(original.iterations);
|
---|
266 | evaluatedSolutions = cloner.Clone(original.evaluatedSolutions);
|
---|
267 | bestQuality = cloner.Clone(original.bestQuality);
|
---|
268 | bestSolution = cloner.Clone(original.bestSolution);
|
---|
269 | localSearchEvaluations = cloner.Clone(original.localSearchEvaluations);
|
---|
270 | localOptimaLevel = cloner.Clone(original.localOptimaLevel);
|
---|
271 | byBreeding = cloner.Clone(original.byBreeding);
|
---|
272 | byRelinking = cloner.Clone(original.byRelinking);
|
---|
273 | byDelinking = cloner.Clone(original.byDelinking);
|
---|
274 | bySampling = cloner.Clone(original.bySampling);
|
---|
275 | byHillclimbing = cloner.Clone(original.byHillclimbing);
|
---|
276 | byAdaptivewalking = cloner.Clone(original.byAdaptivewalking);
|
---|
277 | random = cloner.Clone(original.random);
|
---|
278 | breedingPerformanceModel = cloner.Clone(original.breedingPerformanceModel);
|
---|
279 | breedingStat = original.breedingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3, x.Item4)).ToList();
|
---|
280 | relinkingPerformanceModel = cloner.Clone(original.relinkingPerformanceModel);
|
---|
281 | relinkingStat = original.relinkingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3, x.Item4)).ToList();
|
---|
282 | delinkingPerformanceModel = cloner.Clone(original.delinkingPerformanceModel);
|
---|
283 | delinkingStat = original.delinkingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3, x.Item4)).ToList();
|
---|
284 | samplingPerformanceModel = cloner.Clone(original.samplingPerformanceModel);
|
---|
285 | samplingStat = original.samplingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
|
---|
286 | hillclimbingPerformanceModel = cloner.Clone(original.hillclimbingPerformanceModel);
|
---|
287 | hillclimbingStat = original.hillclimbingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
|
---|
288 | adaptiveWalkPerformanceModel = cloner.Clone(original.adaptiveWalkPerformanceModel);
|
---|
289 | adaptivewalkingStat = original.adaptivewalkingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
|
---|
290 |
|
---|
291 | Model = cloner.Clone(original.Model);
|
---|
292 | }
|
---|
293 | public MemPRPopulationContext() : this("MemPRContext") { }
|
---|
294 | public MemPRPopulationContext(string name) : base(name) {
|
---|
295 | scope = new Scope("Global");
|
---|
296 |
|
---|
297 | Parameters.Add(problem = new ValueParameter<TProblem>("Problem"));
|
---|
298 | Parameters.Add(initialized = new ValueParameter<BoolValue>("Initialized", new BoolValue(false)));
|
---|
299 | Parameters.Add(iterations = new ValueParameter<IntValue>("Iterations", new IntValue(0)));
|
---|
300 | Parameters.Add(evaluatedSolutions = new ValueParameter<IntValue>("EvaluatedSolutions", new IntValue(0)));
|
---|
301 | Parameters.Add(bestQuality = new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(double.NaN)));
|
---|
302 | Parameters.Add(bestSolution = new ValueParameter<TSolution>("BestFoundSolution"));
|
---|
303 | Parameters.Add(localSearchEvaluations = new ValueParameter<IntValue>("LocalSearchEvaluations", new IntValue(0)));
|
---|
304 | Parameters.Add(localOptimaLevel = new ValueParameter<DoubleValue>("LocalOptimaLevel", new DoubleValue(0)));
|
---|
305 | Parameters.Add(byBreeding = new ValueParameter<IntValue>("ByBreeding", new IntValue(0)));
|
---|
306 | Parameters.Add(byRelinking = new ValueParameter<IntValue>("ByRelinking", new IntValue(0)));
|
---|
307 | Parameters.Add(byDelinking = new ValueParameter<IntValue>("ByDelinking", new IntValue(0)));
|
---|
308 | Parameters.Add(bySampling = new ValueParameter<IntValue>("BySampling", new IntValue(0)));
|
---|
309 | Parameters.Add(byHillclimbing = new ValueParameter<IntValue>("ByHillclimbing", new IntValue(0)));
|
---|
310 | Parameters.Add(byAdaptivewalking = new ValueParameter<IntValue>("ByAdaptivewalking", new IntValue(0)));
|
---|
311 | Parameters.Add(random = new ValueParameter<IRandom>("Random", new MersenneTwister()));
|
---|
312 |
|
---|
313 | breedingStat = new List<Tuple<double, double, double, double>>();
|
---|
314 | relinkingStat = new List<Tuple<double, double, double, double>>();
|
---|
315 | delinkingStat = new List<Tuple<double, double, double, double>>();
|
---|
316 | samplingStat = new List<Tuple<double, double>>();
|
---|
317 | hillclimbingStat = new List<Tuple<double, double>>();
|
---|
318 | adaptivewalkingStat = new List<Tuple<double, double>>();
|
---|
319 | }
|
---|
320 |
|
---|
321 | public abstract ISingleObjectiveSolutionScope<TSolution> ToScope(TSolution code, double fitness = double.NaN);
|
---|
322 |
|
---|
323 | public virtual double Evaluate(TSolution solution, CancellationToken token) {
|
---|
324 | var solScope = ToScope(solution);
|
---|
325 | Evaluate(solScope, token);
|
---|
326 | return solScope.Fitness;
|
---|
327 | }
|
---|
328 |
|
---|
329 | public virtual void Evaluate(ISingleObjectiveSolutionScope<TSolution> solScope, CancellationToken token) {
|
---|
330 | var pdef = Problem as ISingleObjectiveProblemDefinition;
|
---|
331 | if (pdef != null) {
|
---|
332 | var ind = new SingleEncodingIndividual(pdef.Encoding, solScope);
|
---|
333 | solScope.Fitness = pdef.Evaluate(ind, Random);
|
---|
334 | } else {
|
---|
335 | RunOperator(Problem.Evaluator, solScope, token);
|
---|
336 | }
|
---|
337 | }
|
---|
338 |
|
---|
339 | public abstract TSolutionContext CreateSingleSolutionContext(ISingleObjectiveSolutionScope<TSolution> solution);
|
---|
340 |
|
---|
341 | public void IncrementEvaluatedSolutions(int byEvaluations) {
|
---|
342 | if (byEvaluations < 0) throw new ArgumentException("Can only increment and not decrement evaluated solutions.");
|
---|
343 | EvaluatedSolutions += byEvaluations;
|
---|
344 | }
|
---|
345 |
|
---|
346 | #region Breeding Performance
|
---|
347 | public void AddBreedingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) {
|
---|
348 | if (IsBetter(a, b))
|
---|
349 | breedingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, child.Fitness));
|
---|
350 | else breedingStat.Add(Tuple.Create(b.Fitness, a.Fitness, parentDist, child.Fitness));
|
---|
351 | if (breedingStat.Count % 10 == 0) RelearnBreedingPerformanceModel();
|
---|
352 | }
|
---|
353 | public void RelearnBreedingPerformanceModel() {
|
---|
354 | breedingPerformanceModel = RunRegression(PrepareRegression(ToListRow(breedingStat)), breedingPerformanceModel).Model;
|
---|
355 | }
|
---|
356 | public bool BreedingSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) {
|
---|
357 | if (breedingPerformanceModel == null) return true;
|
---|
358 | double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue;
|
---|
359 | foreach (var d in BreedingStat) {
|
---|
360 | if (d.Item1 < minI1) minI1 = d.Item1;
|
---|
361 | if (d.Item1 > maxI1) maxI1 = d.Item1;
|
---|
362 | if (d.Item2 < minI2) minI2 = d.Item2;
|
---|
363 | if (d.Item2 > maxI2) maxI2 = d.Item2;
|
---|
364 | }
|
---|
365 | if (p1.Fitness < minI1 || p1.Fitness > maxI1 || p2.Fitness < minI2 || p2.Fitness > maxI2)
|
---|
366 | return true;
|
---|
367 |
|
---|
368 | return Random.NextDouble() < ProbabilityAcceptAbsolutePerformanceModel(new List<double> { p1.Fitness, p2.Fitness, dist }, breedingPerformanceModel);
|
---|
369 | }
|
---|
370 | #endregion
|
---|
371 |
|
---|
372 | #region Relinking Performance
|
---|
373 | public void AddRelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) {
|
---|
374 | if (IsBetter(a, b))
|
---|
375 | relinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - a.Fitness : a.Fitness - child.Fitness));
|
---|
376 | else relinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - b.Fitness : b.Fitness - child.Fitness));
|
---|
377 | if (relinkingStat.Count % 10 == 0) RelearnRelinkingPerformanceModel();
|
---|
378 | }
|
---|
379 | public void RelearnRelinkingPerformanceModel() {
|
---|
380 | relinkingPerformanceModel = RunRegression(PrepareRegression(ToListRow(relinkingStat)), relinkingPerformanceModel).Model;
|
---|
381 | }
|
---|
382 | public bool RelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) {
|
---|
383 | if (relinkingPerformanceModel == null) return true;
|
---|
384 | double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue;
|
---|
385 | foreach (var d in RelinkingStat) {
|
---|
386 | if (d.Item1 < minI1) minI1 = d.Item1;
|
---|
387 | if (d.Item1 > maxI1) maxI1 = d.Item1;
|
---|
388 | if (d.Item2 < minI2) minI2 = d.Item2;
|
---|
389 | if (d.Item2 > maxI2) maxI2 = d.Item2;
|
---|
390 | }
|
---|
391 | if (p1.Fitness < minI1 || p1.Fitness > maxI1 || p2.Fitness < minI2 || p2.Fitness > maxI2)
|
---|
392 | return true;
|
---|
393 |
|
---|
394 | if (IsBetter(p1, p2)) {
|
---|
395 | return Random.NextDouble() < ProbabilityAcceptRelativePerformanceModel(p1.Fitness, new List<double> { p1.Fitness, p2.Fitness, dist }, relinkingPerformanceModel);
|
---|
396 | }
|
---|
397 | return Random.NextDouble() < ProbabilityAcceptRelativePerformanceModel(p2.Fitness, new List<double> { p1.Fitness, p2.Fitness, dist }, relinkingPerformanceModel);
|
---|
398 | }
|
---|
399 | #endregion
|
---|
400 |
|
---|
401 | #region Delinking Performance
|
---|
402 | public void AddDelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) {
|
---|
403 | if (IsBetter(a, b))
|
---|
404 | delinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - a.Fitness : a.Fitness - child.Fitness));
|
---|
405 | else delinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - b.Fitness : b.Fitness - child.Fitness));
|
---|
406 | if (delinkingStat.Count % 10 == 0) RelearnDelinkingPerformanceModel();
|
---|
407 | }
|
---|
408 | public void RelearnDelinkingPerformanceModel() {
|
---|
409 | delinkingPerformanceModel = RunRegression(PrepareRegression(ToListRow(delinkingStat)), delinkingPerformanceModel).Model;
|
---|
410 | }
|
---|
411 | public bool DelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) {
|
---|
412 | if (delinkingPerformanceModel == null) return true;
|
---|
413 | double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue;
|
---|
414 | foreach (var d in DelinkingStat) {
|
---|
415 | if (d.Item1 < minI1) minI1 = d.Item1;
|
---|
416 | if (d.Item1 > maxI1) maxI1 = d.Item1;
|
---|
417 | if (d.Item2 < minI2) minI2 = d.Item2;
|
---|
418 | if (d.Item2 > maxI2) maxI2 = d.Item2;
|
---|
419 | }
|
---|
420 | if (p1.Fitness < minI1 || p1.Fitness > maxI1 || p2.Fitness < minI2 || p2.Fitness > maxI2)
|
---|
421 | return true;
|
---|
422 | if (IsBetter(p1, p2)) {
|
---|
423 | return Random.NextDouble() < ProbabilityAcceptRelativePerformanceModel(p1.Fitness, new List<double> { p1.Fitness, p2.Fitness, dist }, delinkingPerformanceModel);
|
---|
424 | }
|
---|
425 | return Random.NextDouble() < ProbabilityAcceptRelativePerformanceModel(p2.Fitness, new List<double> { p1.Fitness, p2.Fitness, dist }, delinkingPerformanceModel);
|
---|
426 | }
|
---|
427 | #endregion
|
---|
428 |
|
---|
429 | #region Sampling Performance
|
---|
430 | public void AddSamplingResult(ISingleObjectiveSolutionScope<TSolution> sample, double avgDist) {
|
---|
431 | samplingStat.Add(Tuple.Create(avgDist, sample.Fitness));
|
---|
432 | if (samplingStat.Count % 10 == 0) RelearnSamplingPerformanceModel();
|
---|
433 | }
|
---|
434 | public void RelearnSamplingPerformanceModel() {
|
---|
435 | samplingPerformanceModel = RunRegression(PrepareRegression(ToListRow(samplingStat)), samplingPerformanceModel).Model;
|
---|
436 | }
|
---|
437 | public bool SamplingSuited(double avgDist) {
|
---|
438 | if (samplingPerformanceModel == null) return true;
|
---|
439 | if (avgDist < samplingStat.Min(x => x.Item1) || avgDist > samplingStat.Max(x => x.Item1)) return true;
|
---|
440 | return Random.NextDouble() < ProbabilityAcceptAbsolutePerformanceModel(new List<double> { avgDist }, samplingPerformanceModel);
|
---|
441 | }
|
---|
442 | #endregion
|
---|
443 |
|
---|
444 | #region Hillclimbing Performance
|
---|
445 | public void AddHillclimbingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) {
|
---|
446 | hillclimbingStat.Add(Tuple.Create(input.Fitness, Maximization ? outcome.Fitness - input.Fitness : input.Fitness - outcome.Fitness));
|
---|
447 | if (hillclimbingStat.Count % 10 == 0) RelearnHillclimbingPerformanceModel();
|
---|
448 | }
|
---|
449 | public void RelearnHillclimbingPerformanceModel() {
|
---|
450 | hillclimbingPerformanceModel = RunRegression(PrepareRegression(ToListRow(hillclimbingStat)), hillclimbingPerformanceModel).Model;
|
---|
451 | }
|
---|
452 | public bool HillclimbingSuited(double startingFitness) {
|
---|
453 | if (hillclimbingPerformanceModel == null) return true;
|
---|
454 | if (startingFitness < HillclimbingStat.Min(x => x.Item1) || startingFitness > HillclimbingStat.Max(x => x.Item1))
|
---|
455 | return true;
|
---|
456 | return Random.NextDouble() < ProbabilityAcceptRelativePerformanceModel(startingFitness, new List<double> { startingFitness }, hillclimbingPerformanceModel);
|
---|
457 | }
|
---|
458 | #endregion
|
---|
459 |
|
---|
460 | #region Adaptivewalking Performance
|
---|
461 | public void AddAdaptivewalkingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) {
|
---|
462 | adaptivewalkingStat.Add(Tuple.Create(input.Fitness, Maximization ? outcome.Fitness - input.Fitness : input.Fitness - outcome.Fitness));
|
---|
463 | if (adaptivewalkingStat.Count % 10 == 0) RelearnAdaptiveWalkPerformanceModel();
|
---|
464 | }
|
---|
465 | public void RelearnAdaptiveWalkPerformanceModel() {
|
---|
466 | adaptiveWalkPerformanceModel = RunRegression(PrepareRegression(ToListRow(adaptivewalkingStat)), adaptiveWalkPerformanceModel).Model;
|
---|
467 | }
|
---|
468 | public bool AdaptivewalkingSuited(double startingFitness) {
|
---|
469 | if (adaptiveWalkPerformanceModel == null) return true;
|
---|
470 | if (startingFitness < AdaptivewalkingStat.Min(x => x.Item1) || startingFitness > AdaptivewalkingStat.Max(x => x.Item1))
|
---|
471 | return true;
|
---|
472 | return Random.NextDouble() < ProbabilityAcceptRelativePerformanceModel(startingFitness, new List<double> { startingFitness }, adaptiveWalkPerformanceModel);
|
---|
473 | }
|
---|
474 | #endregion
|
---|
475 |
|
---|
476 | public IConfidenceRegressionSolution GetSolution(IConfidenceRegressionModel model, IEnumerable<Tuple<double, double>> data) {
|
---|
477 | return new ConfidenceRegressionSolution(model, PrepareRegression(ToListRow(data.ToList())));
|
---|
478 | }
|
---|
479 | public IConfidenceRegressionSolution GetSolution(IConfidenceRegressionModel model, IEnumerable<Tuple<double, double, double>> data) {
|
---|
480 | return new ConfidenceRegressionSolution(model, PrepareRegression(ToListRow(data.ToList())));
|
---|
481 | }
|
---|
482 | public IConfidenceRegressionSolution GetSolution(IConfidenceRegressionModel model, IEnumerable<Tuple<double, double, double, double>> data) {
|
---|
483 | return new ConfidenceRegressionSolution(model, PrepareRegression(ToListRow(data.ToList())));
|
---|
484 | }
|
---|
485 |
|
---|
486 | protected RegressionProblemData PrepareRegression(List<List<double>> data) {
|
---|
487 | var columns = data.First().Select(y => new List<double>()).ToList();
|
---|
488 | foreach (var next in data.Shuffle(Random)) {
|
---|
489 | for (var i = 0; i < next.Count; i++) {
|
---|
490 | columns[i].Add(next[i]);
|
---|
491 | }
|
---|
492 | }
|
---|
493 | var ds = new Dataset(columns.Select((v, i) => i < columns.Count - 1 ? "in" + i : "out").ToList(), columns);
|
---|
494 | var regPrb = new RegressionProblemData(ds, Enumerable.Range(0, columns.Count - 1).Select(x => "in" + x), "out") {
|
---|
495 | TrainingPartition = { Start = 0, End = Math.Min(50, data.Count) },
|
---|
496 | TestPartition = { Start = Math.Min(50, data.Count), End = data.Count }
|
---|
497 | };
|
---|
498 | return regPrb;
|
---|
499 | }
|
---|
500 |
|
---|
501 | protected static IConfidenceRegressionSolution RunRegression(RegressionProblemData trainingData, IConfidenceRegressionModel baseLineModel = null) {
|
---|
502 | var targetValues = trainingData.Dataset.GetDoubleValues(trainingData.TargetVariable, trainingData.TrainingIndices).ToList();
|
---|
503 | var baseline = baseLineModel != null ? new ConfidenceRegressionSolution(baseLineModel, trainingData) : null;
|
---|
504 | var constantSolution = new ConfidenceRegressionSolution(new ConfidenceConstantModel(targetValues.Average(), targetValues.Variance(), trainingData.TargetVariable), trainingData);
|
---|
505 | var gpr = new GaussianProcessRegression { Problem = { ProblemData = trainingData } };
|
---|
506 | if (trainingData.InputVariables.CheckedItems.Any(x => alglib.pearsoncorr2(trainingData.Dataset.GetDoubleValues(x.Value.Value).ToArray(), trainingData.TargetVariableValues.ToArray()) > 0.8)) {
|
---|
507 | gpr.MeanFunction = new MeanZero();
|
---|
508 | var cov1 = new CovarianceSum();
|
---|
509 | cov1.Terms.Add(new CovarianceLinearArd());
|
---|
510 | cov1.Terms.Add(new CovarianceConst());
|
---|
511 | gpr.CovarianceFunction = cov1;
|
---|
512 | }
|
---|
513 | IConfidenceRegressionSolution solution = null;
|
---|
514 | var cnt = 0;
|
---|
515 | do {
|
---|
516 | ExecuteAlgorithm(gpr);
|
---|
517 | solution = (IConfidenceRegressionSolution)gpr.Results["Solution"].Value;
|
---|
518 | cnt++;
|
---|
519 | } while (cnt < 10 && (solution == null || solution.TrainingRSquared.IsAlmost(0)));
|
---|
520 |
|
---|
521 | return GetBestRegressionSolution(constantSolution, baseline, solution);
|
---|
522 | }
|
---|
523 |
|
---|
524 | private static IConfidenceRegressionSolution GetBestRegressionSolution(IConfidenceRegressionSolution constant, IConfidenceRegressionSolution baseline, IConfidenceRegressionSolution solution) {
|
---|
525 | if (baseline == null)
|
---|
526 | return constant.TrainingMeanAbsoluteError < solution.TrainingMeanAbsoluteError ? constant : solution;
|
---|
527 |
|
---|
528 | double a, b, c;
|
---|
529 | if (constant.ProblemData.Dataset.Rows < 60) {
|
---|
530 | c = constant.TrainingMeanAbsoluteError;
|
---|
531 | b = baseline.TrainingMeanAbsoluteError;
|
---|
532 | a = solution.TrainingMeanAbsoluteError;
|
---|
533 | } else {
|
---|
534 | c = constant.TestMeanAbsoluteError;
|
---|
535 | b = baseline.TestMeanAbsoluteError;
|
---|
536 | a = solution.TestMeanAbsoluteError;
|
---|
537 | }
|
---|
538 | if (c < b && (c < a || b < a)) return constant;
|
---|
539 | if (b < c && (b < a || c < a)) return baseline;
|
---|
540 | return solution;
|
---|
541 | }
|
---|
542 |
|
---|
543 | protected static void ExecuteAlgorithm(IAlgorithm algorithm) {
|
---|
544 | using (var evt = new AutoResetEvent(false)) {
|
---|
545 | EventHandler exeStateChanged = (o, args) => {
|
---|
546 | if (algorithm.ExecutionState != ExecutionState.Started)
|
---|
547 | evt.Set();
|
---|
548 | };
|
---|
549 | algorithm.ExecutionStateChanged += exeStateChanged;
|
---|
550 | if (algorithm.ExecutionState != ExecutionState.Prepared) {
|
---|
551 | algorithm.Prepare(true);
|
---|
552 | evt.WaitOne();
|
---|
553 | }
|
---|
554 | algorithm.Start();
|
---|
555 | evt.WaitOne();
|
---|
556 | algorithm.ExecutionStateChanged -= exeStateChanged;
|
---|
557 | }
|
---|
558 | }
|
---|
559 |
|
---|
560 | private double ProbabilityAcceptAbsolutePerformanceModel(List<double> inputs, IConfidenceRegressionModel model) {
|
---|
561 | var inputVariables = inputs.Select((v, i) => "in" + i);
|
---|
562 | var ds = new Dataset(inputVariables.Concat( new [] { "out" }), inputs.Select(x => new List<double> { x }).Concat(new [] { new List<double> { double.NaN } }));
|
---|
563 | var mean = model.GetEstimatedValues(ds, new[] { 0 }).Single();
|
---|
564 | var sdev = Math.Sqrt(model.GetEstimatedVariances(ds, new[] { 0 }).Single());
|
---|
565 |
|
---|
566 | // calculate the fitness goal
|
---|
567 | var goal = Maximization ? Population.Min(x => x.Fitness) : Population.Max(x => x.Fitness);
|
---|
568 | var z = (goal - mean) / sdev;
|
---|
569 | // return the probability of achieving or surpassing that goal
|
---|
570 | var y = alglib.invnormaldistribution(z);
|
---|
571 | return Maximization ? 1.0 - y /* P(X >= z) */ : y; // P(X <= z)
|
---|
572 | }
|
---|
573 |
|
---|
574 | private double ProbabilityAcceptRelativePerformanceModel(double basePerformance, List<double> inputs, IConfidenceRegressionModel model) {
|
---|
575 | var inputVariables = inputs.Select((v, i) => "in" + i);
|
---|
576 | var ds = new Dataset(inputVariables.Concat(new[] { "out" }), inputs.Select(x => new List<double> { x }).Concat(new[] { new List<double> { double.NaN } }));
|
---|
577 | var mean = model.GetEstimatedValues(ds, new[] { 0 }).Single();
|
---|
578 | var sdev = Math.Sqrt(model.GetEstimatedVariances(ds, new[] { 0 }).Single());
|
---|
579 |
|
---|
580 | // calculate the improvement goal
|
---|
581 | var goal = Maximization ? Population.Min(x => x.Fitness) - basePerformance : basePerformance - Population.Max(x => x.Fitness);
|
---|
582 | var z = (goal - mean) / sdev;
|
---|
583 | // return the probability of achieving or surpassing that goal
|
---|
584 | return 1.0 - alglib.invnormaldistribution(z); /* P(X >= z) */
|
---|
585 | }
|
---|
586 |
|
---|
587 | private static List<List<double>> ToListRow(List<Tuple<double, double>> rows) {
|
---|
588 | return rows.Select(x => new List<double> { x.Item1, x.Item2 }).ToList();
|
---|
589 | }
|
---|
590 | private static List<List<double>> ToListRow(List<Tuple<double, double, double>> rows) {
|
---|
591 | return rows.Select(x => new List<double> { x.Item1, x.Item2, x.Item3 }).ToList();
|
---|
592 | }
|
---|
593 | private static List<List<double>> ToListRow(List<Tuple<double, double, double, double>> rows) {
|
---|
594 | return rows.Select(x => new List<double> { x.Item1, x.Item2, x.Item3, x.Item4 }).ToList();
|
---|
595 | }
|
---|
596 |
|
---|
597 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
598 | public bool IsBetter(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b) {
|
---|
599 | return IsBetter(a.Fitness, b.Fitness);
|
---|
600 | }
|
---|
601 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
602 | public bool IsBetter(double a, double b) {
|
---|
603 | return double.IsNaN(b) && !double.IsNaN(a)
|
---|
604 | || Maximization && a > b
|
---|
605 | || !Maximization && a < b;
|
---|
606 | }
|
---|
607 |
|
---|
608 | #region IExecutionContext members
|
---|
609 | public IAtomicOperation CreateOperation(IOperator op) {
|
---|
610 | return new ExecutionContext(this, op, Scope);
|
---|
611 | }
|
---|
612 |
|
---|
613 | public IAtomicOperation CreateOperation(IOperator op, IScope s) {
|
---|
614 | return new ExecutionContext(this, op, s);
|
---|
615 | }
|
---|
616 |
|
---|
617 | public IAtomicOperation CreateChildOperation(IOperator op) {
|
---|
618 | return new ExecutionContext(this, op, Scope);
|
---|
619 | }
|
---|
620 |
|
---|
621 | public IAtomicOperation CreateChildOperation(IOperator op, IScope s) {
|
---|
622 | return new ExecutionContext(this, op, s);
|
---|
623 | }
|
---|
624 | #endregion
|
---|
625 |
|
---|
626 | #region Engine Helper
|
---|
627 | public void RunOperator(IOperator op, IScope scope, CancellationToken cancellationToken) {
|
---|
628 | var stack = new Stack<IOperation>();
|
---|
629 | stack.Push(CreateChildOperation(op, scope));
|
---|
630 |
|
---|
631 | while (stack.Count > 0) {
|
---|
632 | cancellationToken.ThrowIfCancellationRequested();
|
---|
633 |
|
---|
634 | var next = stack.Pop();
|
---|
635 | if (next is OperationCollection) {
|
---|
636 | var coll = (OperationCollection)next;
|
---|
637 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
638 | if (coll[i] != null) stack.Push(coll[i]);
|
---|
639 | } else if (next is IAtomicOperation) {
|
---|
640 | var operation = (IAtomicOperation)next;
|
---|
641 | try {
|
---|
642 | next = operation.Operator.Execute((IExecutionContext)operation, cancellationToken);
|
---|
643 | } catch (Exception ex) {
|
---|
644 | stack.Push(operation);
|
---|
645 | if (ex is OperationCanceledException) throw ex;
|
---|
646 | else throw new OperatorExecutionException(operation.Operator, ex);
|
---|
647 | }
|
---|
648 | if (next != null) stack.Push(next);
|
---|
649 | }
|
---|
650 | }
|
---|
651 | }
|
---|
652 | #endregion
|
---|
653 | }
|
---|
654 |
|
---|
655 | [Item("SingleSolutionMemPRContext", "Abstract base class for single solution MemPR contexts.")]
|
---|
656 | [StorableClass]
|
---|
657 | public abstract class MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> : ParameterizedNamedItem,
|
---|
658 | ISingleSolutionHeuristicAlgorithmContext<TProblem, TSolution>, IEvaluationServiceContext<TSolution>
|
---|
659 | where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem
|
---|
660 | where TSolution : class, IItem
|
---|
661 | where TContext : MemPRPopulationContext<TProblem, TSolution, TContext, TSolutionContext>
|
---|
662 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> {
|
---|
663 |
|
---|
664 | private TContext parent;
|
---|
665 | public IExecutionContext Parent {
|
---|
666 | get { return parent; }
|
---|
667 | set { throw new InvalidOperationException("Cannot set the parent of a single-solution context."); }
|
---|
668 | }
|
---|
669 |
|
---|
670 | [Storable]
|
---|
671 | private ISingleObjectiveSolutionScope<TSolution> scope;
|
---|
672 | public IScope Scope {
|
---|
673 | get { return scope; }
|
---|
674 | }
|
---|
675 |
|
---|
676 | IKeyedItemCollection<string, IParameter> IExecutionContext.Parameters {
|
---|
677 | get { return Parameters; }
|
---|
678 | }
|
---|
679 |
|
---|
680 | public TProblem Problem {
|
---|
681 | get { return parent.Problem; }
|
---|
682 | }
|
---|
683 | public bool Maximization {
|
---|
684 | get { return parent.Maximization; }
|
---|
685 | }
|
---|
686 |
|
---|
687 | public double BestQuality {
|
---|
688 | get { return parent.BestQuality; }
|
---|
689 | set { parent.BestQuality = value; }
|
---|
690 | }
|
---|
691 |
|
---|
692 | public TSolution BestSolution {
|
---|
693 | get { return parent.BestSolution; }
|
---|
694 | set { parent.BestSolution = value; }
|
---|
695 | }
|
---|
696 |
|
---|
697 | public IRandom Random {
|
---|
698 | get { return parent.Random; }
|
---|
699 | }
|
---|
700 |
|
---|
701 | [Storable]
|
---|
702 | private IValueParameter<IntValue> evaluatedSolutions;
|
---|
703 | public int EvaluatedSolutions {
|
---|
704 | get { return evaluatedSolutions.Value.Value; }
|
---|
705 | set { evaluatedSolutions.Value.Value = value; }
|
---|
706 | }
|
---|
707 |
|
---|
708 | [Storable]
|
---|
709 | private IValueParameter<IntValue> iterations;
|
---|
710 | public int Iterations {
|
---|
711 | get { return iterations.Value.Value; }
|
---|
712 | set { iterations.Value.Value = value; }
|
---|
713 | }
|
---|
714 |
|
---|
715 | ISingleObjectiveSolutionScope<TSolution> ISingleSolutionHeuristicAlgorithmContext<TProblem, TSolution>.Solution {
|
---|
716 | get { return scope; }
|
---|
717 | }
|
---|
718 |
|
---|
719 | [StorableConstructor]
|
---|
720 | protected MemPRSolutionContext(bool deserializing) : base(deserializing) { }
|
---|
721 | protected MemPRSolutionContext(MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> original, Cloner cloner)
|
---|
722 | : base(original, cloner) {
|
---|
723 | scope = cloner.Clone(original.scope);
|
---|
724 | evaluatedSolutions = cloner.Clone(original.evaluatedSolutions);
|
---|
725 | iterations = cloner.Clone(original.iterations);
|
---|
726 | }
|
---|
727 | public MemPRSolutionContext(TContext baseContext, ISingleObjectiveSolutionScope<TSolution> solution) {
|
---|
728 | parent = baseContext;
|
---|
729 | scope = solution;
|
---|
730 |
|
---|
731 | Parameters.Add(evaluatedSolutions = new ValueParameter<IntValue>("EvaluatedSolutions", new IntValue(0)));
|
---|
732 | Parameters.Add(iterations = new ValueParameter<IntValue>("Iterations", new IntValue(0)));
|
---|
733 | }
|
---|
734 |
|
---|
735 | public void IncrementEvaluatedSolutions(int byEvaluations) {
|
---|
736 | if (byEvaluations < 0) throw new ArgumentException("Can only increment and not decrement evaluated solutions.");
|
---|
737 | EvaluatedSolutions += byEvaluations;
|
---|
738 | }
|
---|
739 | public virtual double Evaluate(TSolution solution, CancellationToken token) {
|
---|
740 | return parent.Evaluate(solution, token);
|
---|
741 | }
|
---|
742 |
|
---|
743 | public virtual void Evaluate(ISingleObjectiveSolutionScope<TSolution> solScope, CancellationToken token) {
|
---|
744 | parent.Evaluate(solScope, token);
|
---|
745 | }
|
---|
746 |
|
---|
747 | #region IExecutionContext members
|
---|
748 | public IAtomicOperation CreateOperation(IOperator op) {
|
---|
749 | return new ExecutionContext(this, op, Scope);
|
---|
750 | }
|
---|
751 |
|
---|
752 | public IAtomicOperation CreateOperation(IOperator op, IScope s) {
|
---|
753 | return new ExecutionContext(this, op, s);
|
---|
754 | }
|
---|
755 |
|
---|
756 | public IAtomicOperation CreateChildOperation(IOperator op) {
|
---|
757 | return new ExecutionContext(this, op, Scope);
|
---|
758 | }
|
---|
759 |
|
---|
760 | public IAtomicOperation CreateChildOperation(IOperator op, IScope s) {
|
---|
761 | return new ExecutionContext(this, op, s);
|
---|
762 | }
|
---|
763 | #endregion
|
---|
764 | }
|
---|
765 | }
|
---|