1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Runtime.CompilerServices;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
28 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 | using HeuristicLab.Random;
|
---|
37 | using ExecutionContext = HeuristicLab.Core.ExecutionContext;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.MemPR {
|
---|
40 | [Item("MemPRContext", "Abstract base class for MemPR contexts.")]
|
---|
41 | [StorableClass]
|
---|
42 | public abstract class MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext> : ParameterizedNamedItem,
|
---|
43 | IPopulationBasedHeuristicAlgorithmContext<TProblem, TSolution>, ISolutionModelContext<TSolution>
|
---|
44 | where TProblem : class, IItem, ISingleObjectiveProblemDefinition
|
---|
45 | where TSolution : class, IItem
|
---|
46 | where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>
|
---|
47 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
|
---|
48 |
|
---|
49 | private IExecutionContext parent;
|
---|
50 | public IExecutionContext Parent {
|
---|
51 | get { return parent; }
|
---|
52 | set { parent = value; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | [Storable]
|
---|
56 | private IScope scope;
|
---|
57 | public IScope Scope {
|
---|
58 | get { return scope; }
|
---|
59 | private set { scope = value; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | IKeyedItemCollection<string, IParameter> IExecutionContext.Parameters {
|
---|
63 | get { return Parameters; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | [Storable]
|
---|
67 | private IValueParameter<TProblem> problem;
|
---|
68 | public TProblem Problem {
|
---|
69 | get { return problem.Value; }
|
---|
70 | set { problem.Value = value; }
|
---|
71 | }
|
---|
72 |
|
---|
73 | [Storable]
|
---|
74 | private IValueParameter<BoolValue> initialized;
|
---|
75 | public bool Initialized {
|
---|
76 | get { return initialized.Value.Value; }
|
---|
77 | set { initialized.Value.Value = value; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | [Storable]
|
---|
81 | private IValueParameter<IntValue> iterations;
|
---|
82 | public int Iterations {
|
---|
83 | get { return iterations.Value.Value; }
|
---|
84 | set { iterations.Value.Value = value; }
|
---|
85 | }
|
---|
86 |
|
---|
87 | [Storable]
|
---|
88 | private IValueParameter<IntValue> evaluatedSolutions;
|
---|
89 | public int EvaluatedSolutions {
|
---|
90 | get { return evaluatedSolutions.Value.Value; }
|
---|
91 | set { evaluatedSolutions.Value.Value = value; }
|
---|
92 | }
|
---|
93 |
|
---|
94 | [Storable]
|
---|
95 | private IValueParameter<DoubleValue> bestQuality;
|
---|
96 | public double BestQuality {
|
---|
97 | get { return bestQuality.Value.Value; }
|
---|
98 | set { bestQuality.Value.Value = value; }
|
---|
99 | }
|
---|
100 |
|
---|
101 | [Storable]
|
---|
102 | private IValueParameter<TSolution> bestSolution;
|
---|
103 | public TSolution BestSolution {
|
---|
104 | get { return bestSolution.Value; }
|
---|
105 | set { bestSolution.Value = value; }
|
---|
106 | }
|
---|
107 |
|
---|
108 | [Storable]
|
---|
109 | private IValueParameter<IntValue> localSearchEvaluations;
|
---|
110 | public int LocalSearchEvaluations {
|
---|
111 | get { return localSearchEvaluations.Value.Value; }
|
---|
112 | set { localSearchEvaluations.Value.Value = value; }
|
---|
113 | }
|
---|
114 |
|
---|
115 | [Storable]
|
---|
116 | private IValueParameter<DoubleValue> localOptimaLevel;
|
---|
117 | public double LocalOptimaLevel {
|
---|
118 | get { return localOptimaLevel.Value.Value; }
|
---|
119 | set { localOptimaLevel.Value.Value = value; }
|
---|
120 | }
|
---|
121 |
|
---|
122 | [Storable]
|
---|
123 | private IValueParameter<IntValue> byBreeding;
|
---|
124 | public int ByBreeding {
|
---|
125 | get { return byBreeding.Value.Value; }
|
---|
126 | set { byBreeding.Value.Value = value; }
|
---|
127 | }
|
---|
128 |
|
---|
129 | [Storable]
|
---|
130 | private IValueParameter<IntValue> byRelinking;
|
---|
131 | public int ByRelinking {
|
---|
132 | get { return byRelinking.Value.Value; }
|
---|
133 | set { byRelinking.Value.Value = value; }
|
---|
134 | }
|
---|
135 |
|
---|
136 | [Storable]
|
---|
137 | private IValueParameter<IntValue> byDelinking;
|
---|
138 | public int ByDelinking {
|
---|
139 | get { return byDelinking.Value.Value; }
|
---|
140 | set { byDelinking.Value.Value = value; }
|
---|
141 | }
|
---|
142 |
|
---|
143 | [Storable]
|
---|
144 | private IValueParameter<IntValue> bySampling;
|
---|
145 | public int BySampling {
|
---|
146 | get { return bySampling.Value.Value; }
|
---|
147 | set { bySampling.Value.Value = value; }
|
---|
148 | }
|
---|
149 |
|
---|
150 | [Storable]
|
---|
151 | private IValueParameter<IntValue> byHillclimbing;
|
---|
152 | public int ByHillclimbing {
|
---|
153 | get { return byHillclimbing.Value.Value; }
|
---|
154 | set { byHillclimbing.Value.Value = value; }
|
---|
155 | }
|
---|
156 |
|
---|
157 | [Storable]
|
---|
158 | private IValueParameter<IntValue> byAdaptivewalking;
|
---|
159 | public int ByAdaptivewalking {
|
---|
160 | get { return byAdaptivewalking.Value.Value; }
|
---|
161 | set { byAdaptivewalking.Value.Value = value; }
|
---|
162 | }
|
---|
163 |
|
---|
164 | [Storable]
|
---|
165 | private IValueParameter<IRandom> random;
|
---|
166 | public IRandom Random {
|
---|
167 | get { return random.Value; }
|
---|
168 | set { random.Value = value; }
|
---|
169 | }
|
---|
170 |
|
---|
171 | public IEnumerable<ISingleObjectiveSolutionScope<TSolution>> Population {
|
---|
172 | get { return scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>(); }
|
---|
173 | }
|
---|
174 | public void AddToPopulation(ISingleObjectiveSolutionScope<TSolution> solScope) {
|
---|
175 | scope.SubScopes.Add(solScope);
|
---|
176 | }
|
---|
177 | public void ReplaceAtPopulation(int index, ISingleObjectiveSolutionScope<TSolution> solScope) {
|
---|
178 | scope.SubScopes[index] = solScope;
|
---|
179 | }
|
---|
180 | public ISingleObjectiveSolutionScope<TSolution> AtPopulation(int index) {
|
---|
181 | return scope.SubScopes[index] as ISingleObjectiveSolutionScope<TSolution>;
|
---|
182 | }
|
---|
183 | public void SortPopulation() {
|
---|
184 | scope.SubScopes.Replace(scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>().OrderBy(x => Problem.Maximization ? -x.Fitness : x.Fitness).ToList());
|
---|
185 | }
|
---|
186 | public int PopulationCount {
|
---|
187 | get { return scope.SubScopes.Count; }
|
---|
188 | }
|
---|
189 |
|
---|
190 | [Storable]
|
---|
191 | private IConfidenceRegressionModel breedingPerformanceModel;
|
---|
192 | public IConfidenceRegressionModel BreedingPerformanceModel {
|
---|
193 | get { return breedingPerformanceModel; }
|
---|
194 | }
|
---|
195 | [Storable]
|
---|
196 | private List<Tuple<double, double, double>> breedingStat;
|
---|
197 | public List<Tuple<double, double, double>> BreedingStat {
|
---|
198 | get { return breedingStat; }
|
---|
199 | }
|
---|
200 | [Storable]
|
---|
201 | private IConfidenceRegressionModel relinkingPerformanceModel;
|
---|
202 | public IConfidenceRegressionModel RelinkingPerformanceModel {
|
---|
203 | get { return relinkingPerformanceModel; }
|
---|
204 | }
|
---|
205 | [Storable]
|
---|
206 | private List<Tuple<double, double, double>> relinkingStat;
|
---|
207 | public List<Tuple<double, double, double>> RelinkingStat {
|
---|
208 | get { return relinkingStat; }
|
---|
209 | }
|
---|
210 | [Storable]
|
---|
211 | private IConfidenceRegressionModel delinkingPerformanceModel;
|
---|
212 | public IConfidenceRegressionModel DelinkingPerformanceModel {
|
---|
213 | get { return delinkingPerformanceModel; }
|
---|
214 | }
|
---|
215 | [Storable]
|
---|
216 | private List<Tuple<double, double, double>> delinkingStat;
|
---|
217 | public List<Tuple<double, double, double>> DelinkingStat {
|
---|
218 | get { return delinkingStat; }
|
---|
219 | }
|
---|
220 | [Storable]
|
---|
221 | private IConfidenceRegressionModel samplingPerformanceModel;
|
---|
222 | public IConfidenceRegressionModel SamplingPerformanceModel {
|
---|
223 | get { return samplingPerformanceModel; }
|
---|
224 | }
|
---|
225 | [Storable]
|
---|
226 | private List<Tuple<double, double>> samplingStat;
|
---|
227 | public List<Tuple<double, double>> SamplingStat {
|
---|
228 | get { return samplingStat; }
|
---|
229 | }
|
---|
230 | [Storable]
|
---|
231 | private IConfidenceRegressionModel hillclimbingPerformanceModel;
|
---|
232 | public IConfidenceRegressionModel HillclimbingPerformanceModel {
|
---|
233 | get { return hillclimbingPerformanceModel; }
|
---|
234 | }
|
---|
235 | [Storable]
|
---|
236 | private List<Tuple<double, double>> hillclimbingStat;
|
---|
237 | public List<Tuple<double, double>> HillclimbingStat {
|
---|
238 | get { return hillclimbingStat; }
|
---|
239 | }
|
---|
240 | [Storable]
|
---|
241 | private IConfidenceRegressionModel adaptiveWalkPerformanceModel;
|
---|
242 | public IConfidenceRegressionModel AdaptiveWalkPerformanceModel {
|
---|
243 | get { return adaptiveWalkPerformanceModel; }
|
---|
244 | }
|
---|
245 | [Storable]
|
---|
246 | private List<Tuple<double, double>> adaptivewalkingStat;
|
---|
247 | public List<Tuple<double, double>> AdaptivewalkingStat {
|
---|
248 | get { return adaptivewalkingStat; }
|
---|
249 | }
|
---|
250 |
|
---|
251 | [Storable]
|
---|
252 | public ISolutionModel<TSolution> Model { get; set; }
|
---|
253 |
|
---|
254 | [StorableConstructor]
|
---|
255 | protected MemPRPopulationContext(bool deserializing) : base(deserializing) { }
|
---|
256 | protected MemPRPopulationContext(MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner)
|
---|
257 | : base(original, cloner) {
|
---|
258 | scope = cloner.Clone(original.scope);
|
---|
259 | problem = cloner.Clone(original.problem);
|
---|
260 | initialized = cloner.Clone(original.initialized);
|
---|
261 | iterations = cloner.Clone(original.iterations);
|
---|
262 | evaluatedSolutions = cloner.Clone(original.evaluatedSolutions);
|
---|
263 | bestQuality = cloner.Clone(original.bestQuality);
|
---|
264 | bestSolution = cloner.Clone(original.bestSolution);
|
---|
265 | localSearchEvaluations = cloner.Clone(original.localSearchEvaluations);
|
---|
266 | localOptimaLevel = cloner.Clone(original.localOptimaLevel);
|
---|
267 | byBreeding = cloner.Clone(original.byBreeding);
|
---|
268 | byRelinking = cloner.Clone(original.byRelinking);
|
---|
269 | byDelinking = cloner.Clone(original.byDelinking);
|
---|
270 | bySampling = cloner.Clone(original.bySampling);
|
---|
271 | byHillclimbing = cloner.Clone(original.byHillclimbing);
|
---|
272 | byAdaptivewalking = cloner.Clone(original.byAdaptivewalking);
|
---|
273 | random = cloner.Clone(original.random);
|
---|
274 | breedingPerformanceModel = cloner.Clone(original.breedingPerformanceModel);
|
---|
275 | breedingStat = original.breedingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3)).ToList();
|
---|
276 | relinkingPerformanceModel = cloner.Clone(original.relinkingPerformanceModel);
|
---|
277 | relinkingStat = original.relinkingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3)).ToList();
|
---|
278 | delinkingPerformanceModel = cloner.Clone(original.delinkingPerformanceModel);
|
---|
279 | delinkingStat = original.delinkingStat.Select(x => Tuple.Create(x.Item1, x.Item2, x.Item3)).ToList();
|
---|
280 | samplingPerformanceModel = cloner.Clone(original.samplingPerformanceModel);
|
---|
281 | samplingStat = original.samplingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
|
---|
282 | hillclimbingPerformanceModel = cloner.Clone(original.hillclimbingPerformanceModel);
|
---|
283 | hillclimbingStat = original.hillclimbingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
|
---|
284 | adaptiveWalkPerformanceModel = cloner.Clone(original.adaptiveWalkPerformanceModel);
|
---|
285 | adaptivewalkingStat = original.adaptivewalkingStat.Select(x => Tuple.Create(x.Item1, x.Item2)).ToList();
|
---|
286 |
|
---|
287 | Model = cloner.Clone(original.Model);
|
---|
288 | }
|
---|
289 | public MemPRPopulationContext() : this("MemPRContext") { }
|
---|
290 | public MemPRPopulationContext(string name) : base(name) {
|
---|
291 | scope = new Scope("Global");
|
---|
292 |
|
---|
293 | Parameters.Add(problem = new ValueParameter<TProblem>("Problem"));
|
---|
294 | Parameters.Add(initialized = new ValueParameter<BoolValue>("Initialized", new BoolValue(false)));
|
---|
295 | Parameters.Add(iterations = new ValueParameter<IntValue>("Iterations", new IntValue(0)));
|
---|
296 | Parameters.Add(evaluatedSolutions = new ValueParameter<IntValue>("EvaluatedSolutions", new IntValue(0)));
|
---|
297 | Parameters.Add(bestQuality = new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(double.NaN)));
|
---|
298 | Parameters.Add(bestSolution = new ValueParameter<TSolution>("BestSolution"));
|
---|
299 | Parameters.Add(localSearchEvaluations = new ValueParameter<IntValue>("LocalSearchEvaluations", new IntValue(0)));
|
---|
300 | Parameters.Add(localOptimaLevel = new ValueParameter<DoubleValue>("LocalOptimaLevel", new DoubleValue(0)));
|
---|
301 | Parameters.Add(byBreeding = new ValueParameter<IntValue>("ByBreeding", new IntValue(0)));
|
---|
302 | Parameters.Add(byRelinking = new ValueParameter<IntValue>("ByRelinking", new IntValue(0)));
|
---|
303 | Parameters.Add(byDelinking = new ValueParameter<IntValue>("ByDelinking", new IntValue(0)));
|
---|
304 | Parameters.Add(bySampling = new ValueParameter<IntValue>("BySampling", new IntValue(0)));
|
---|
305 | Parameters.Add(byHillclimbing = new ValueParameter<IntValue>("ByHillclimbing", new IntValue(0)));
|
---|
306 | Parameters.Add(byAdaptivewalking = new ValueParameter<IntValue>("ByAdaptivewalking", new IntValue(0)));
|
---|
307 | Parameters.Add(random = new ValueParameter<IRandom>("Random", new MersenneTwister()));
|
---|
308 |
|
---|
309 | breedingStat = new List<Tuple<double, double, double>>();
|
---|
310 | relinkingStat = new List<Tuple<double, double, double>>();
|
---|
311 | delinkingStat = new List<Tuple<double, double, double>>();
|
---|
312 | samplingStat = new List<Tuple<double, double>>();
|
---|
313 | hillclimbingStat = new List<Tuple<double, double>>();
|
---|
314 | adaptivewalkingStat = new List<Tuple<double, double>>();
|
---|
315 | }
|
---|
316 |
|
---|
317 | public abstract TSolutionContext CreateSingleSolutionContext(ISingleObjectiveSolutionScope<TSolution> solution);
|
---|
318 |
|
---|
319 | public void IncrementEvaluatedSolutions(int byEvaluations) {
|
---|
320 | if (byEvaluations < 0) throw new ArgumentException("Can only increment and not decrement evaluated solutions.");
|
---|
321 | EvaluatedSolutions += byEvaluations;
|
---|
322 | }
|
---|
323 |
|
---|
324 | public void RelearnBreedingPerformanceModel() {
|
---|
325 | breedingPerformanceModel = RunRegression(PrepareRegression(BreedingStat), breedingPerformanceModel).Model;
|
---|
326 | }
|
---|
327 | public bool BreedingSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2) {
|
---|
328 | if (breedingPerformanceModel == null) return true;
|
---|
329 | double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue;
|
---|
330 | foreach (var d in BreedingStat) {
|
---|
331 | if (d.Item1 < minI1) minI1 = d.Item1;
|
---|
332 | if (d.Item1 > maxI1) maxI1 = d.Item1;
|
---|
333 | if (d.Item2 < minI2) minI2 = d.Item2;
|
---|
334 | if (d.Item2 > maxI2) maxI2 = d.Item2;
|
---|
335 | }
|
---|
336 | if (IsBetter(p1, p2)) {
|
---|
337 | if (p1.Fitness < minI1 || p1.Fitness > maxI1 || p2.Fitness < minI2 || p2.Fitness > maxI2)
|
---|
338 | return true;
|
---|
339 | return Random.NextDouble() < ProbabilityAccept3dModel(p1.Fitness, p2.Fitness, breedingPerformanceModel);
|
---|
340 | }
|
---|
341 | if (p1.Fitness < minI2 || p1.Fitness > maxI2 || p2.Fitness < minI1 || p2.Fitness > maxI1)
|
---|
342 | return true;
|
---|
343 | return Random.NextDouble() < ProbabilityAccept3dModel(p2.Fitness, p1.Fitness, breedingPerformanceModel);
|
---|
344 | }
|
---|
345 |
|
---|
346 | public void RelearnRelinkingPerformanceModel() {
|
---|
347 | relinkingPerformanceModel = RunRegression(PrepareRegression(RelinkingStat), relinkingPerformanceModel).Model;
|
---|
348 | }
|
---|
349 | public bool RelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2) {
|
---|
350 | if (relinkingPerformanceModel == null) return true;
|
---|
351 | double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue;
|
---|
352 | foreach (var d in RelinkingStat) {
|
---|
353 | if (d.Item1 < minI1) minI1 = d.Item1;
|
---|
354 | if (d.Item1 > maxI1) maxI1 = d.Item1;
|
---|
355 | if (d.Item2 < minI2) minI2 = d.Item2;
|
---|
356 | if (d.Item2 > maxI2) maxI2 = d.Item2;
|
---|
357 | }
|
---|
358 | if (IsBetter(p1, p2)) {
|
---|
359 | if (p1.Fitness < minI1 || p1.Fitness > maxI1 || p2.Fitness < minI2 || p2.Fitness > maxI2)
|
---|
360 | return true;
|
---|
361 | return Random.NextDouble() < ProbabilityAccept3dModel(p1.Fitness, p2.Fitness, relinkingPerformanceModel);
|
---|
362 | }
|
---|
363 | if (p1.Fitness < minI2 || p1.Fitness > maxI2 || p2.Fitness < minI1 || p2.Fitness > maxI1)
|
---|
364 | return true;
|
---|
365 | return Random.NextDouble() < ProbabilityAccept3dModel(p2.Fitness, p1.Fitness, relinkingPerformanceModel);
|
---|
366 | }
|
---|
367 |
|
---|
368 | public void RelearnDelinkingPerformanceModel() {
|
---|
369 | delinkingPerformanceModel = RunRegression(PrepareRegression(DelinkingStat), delinkingPerformanceModel).Model;
|
---|
370 | }
|
---|
371 | public bool DelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2) {
|
---|
372 | if (delinkingPerformanceModel == null) return true;
|
---|
373 | double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue;
|
---|
374 | foreach (var d in DelinkingStat) {
|
---|
375 | if (d.Item1 < minI1) minI1 = d.Item1;
|
---|
376 | if (d.Item1 > maxI1) maxI1 = d.Item1;
|
---|
377 | if (d.Item2 < minI2) minI2 = d.Item2;
|
---|
378 | if (d.Item2 > maxI2) maxI2 = d.Item2;
|
---|
379 | }
|
---|
380 | if (IsBetter(p1, p2)) {
|
---|
381 | if (p1.Fitness < minI1 || p1.Fitness > maxI1 || p2.Fitness < minI2 || p2.Fitness > maxI2)
|
---|
382 | return true;
|
---|
383 | return Random.NextDouble() < ProbabilityAccept3dModel(p1.Fitness, p2.Fitness, delinkingPerformanceModel);
|
---|
384 | }
|
---|
385 | if (p1.Fitness < minI2 || p1.Fitness > maxI2 || p2.Fitness < minI1 || p2.Fitness > maxI1)
|
---|
386 | return true;
|
---|
387 | return Random.NextDouble() < ProbabilityAccept3dModel(p2.Fitness, p1.Fitness, delinkingPerformanceModel);
|
---|
388 | }
|
---|
389 |
|
---|
390 | public void RelearnSamplingPerformanceModel() {
|
---|
391 | samplingPerformanceModel = RunRegression(PrepareRegression(SamplingStat), samplingPerformanceModel).Model;
|
---|
392 | }
|
---|
393 | public bool SamplingSuited() {
|
---|
394 | if (samplingPerformanceModel == null) return true;
|
---|
395 | return Random.NextDouble() < ProbabilityAccept2dModel(Population.Average(x => x.Fitness), samplingPerformanceModel);
|
---|
396 | }
|
---|
397 |
|
---|
398 | public void RelearnHillclimbingPerformanceModel() {
|
---|
399 | hillclimbingPerformanceModel = RunRegression(PrepareRegression(HillclimbingStat), hillclimbingPerformanceModel).Model;
|
---|
400 | }
|
---|
401 | public bool HillclimbingSuited(ISingleObjectiveSolutionScope<TSolution> scope) {
|
---|
402 | if (hillclimbingPerformanceModel == null) return true;
|
---|
403 | if (scope.Fitness < HillclimbingStat.Min(x => x.Item1) || scope.Fitness > HillclimbingStat.Max(x => x.Item1))
|
---|
404 | return true;
|
---|
405 | return Random.NextDouble() < ProbabilityAccept2dModel(scope.Fitness, hillclimbingPerformanceModel);
|
---|
406 | }
|
---|
407 | public bool HillclimbingSuited(double startingFitness) {
|
---|
408 | if (hillclimbingPerformanceModel == null) return true;
|
---|
409 | if (startingFitness < HillclimbingStat.Min(x => x.Item1) || startingFitness > HillclimbingStat.Max(x => x.Item1))
|
---|
410 | return true;
|
---|
411 | return Random.NextDouble() < ProbabilityAccept2dModel(startingFitness, hillclimbingPerformanceModel);
|
---|
412 | }
|
---|
413 |
|
---|
414 | public void RelearnAdaptiveWalkPerformanceModel() {
|
---|
415 | adaptiveWalkPerformanceModel = RunRegression(PrepareRegression(AdaptivewalkingStat), adaptiveWalkPerformanceModel).Model;
|
---|
416 | }
|
---|
417 | public bool AdaptivewalkingSuited(ISingleObjectiveSolutionScope<TSolution> scope) {
|
---|
418 | if (adaptiveWalkPerformanceModel == null) return true;
|
---|
419 | if (scope.Fitness < AdaptivewalkingStat.Min(x => x.Item1) || scope.Fitness > AdaptivewalkingStat.Max(x => x.Item1))
|
---|
420 | return true;
|
---|
421 | return Random.NextDouble() < ProbabilityAccept2dModel(scope.Fitness, adaptiveWalkPerformanceModel);
|
---|
422 | }
|
---|
423 | public bool AdaptivewalkingSuited(double startingFitness) {
|
---|
424 | if (adaptiveWalkPerformanceModel == null) return true;
|
---|
425 | if (startingFitness < AdaptivewalkingStat.Min(x => x.Item1) || startingFitness > AdaptivewalkingStat.Max(x => x.Item1))
|
---|
426 | return true;
|
---|
427 | return Random.NextDouble() < ProbabilityAccept2dModel(startingFitness, adaptiveWalkPerformanceModel);
|
---|
428 | }
|
---|
429 |
|
---|
430 | public IConfidenceRegressionSolution GetSolution(IConfidenceRegressionModel model, List<Tuple<double, double>> data) {
|
---|
431 | return new ConfidenceRegressionSolution(model, PrepareRegression(data));
|
---|
432 | }
|
---|
433 | public IConfidenceRegressionSolution GetSolution(IConfidenceRegressionModel model, List<Tuple<double, double, double>> data) {
|
---|
434 | return new ConfidenceRegressionSolution(model, PrepareRegression(data));
|
---|
435 | }
|
---|
436 |
|
---|
437 | protected RegressionProblemData PrepareRegression(List<Tuple<double, double>> sample) {
|
---|
438 | var inCol = new List<double>();
|
---|
439 | var outCol = new List<double>();
|
---|
440 | foreach (var next in sample.Shuffle(Random)) {
|
---|
441 | inCol.Add(next.Item1);
|
---|
442 | outCol.Add(next.Item2);
|
---|
443 | }
|
---|
444 | var ds = new Dataset(new[] { "in", "out" }, new[] { inCol, outCol });
|
---|
445 | var regPrb = new RegressionProblemData(ds, new[] { "in" }, "out") {
|
---|
446 | TrainingPartition = { Start = 0, End = Math.Min(50, sample.Count) },
|
---|
447 | TestPartition = { Start = Math.Min(50, sample.Count), End = sample.Count }
|
---|
448 | };
|
---|
449 | return regPrb;
|
---|
450 | }
|
---|
451 |
|
---|
452 | protected RegressionProblemData PrepareRegression(List<Tuple<double, double, double>> sample) {
|
---|
453 | var in1Col = new List<double>();
|
---|
454 | var in2Col = new List<double>();
|
---|
455 | var outCol = new List<double>();
|
---|
456 | foreach (var next in sample.Shuffle(Random)) {
|
---|
457 | in1Col.Add(next.Item1);
|
---|
458 | in2Col.Add(next.Item2);
|
---|
459 | outCol.Add(next.Item3);
|
---|
460 | }
|
---|
461 | var ds = new Dataset(new[] { "in1", "in2", "out" }, new[] { in1Col, in2Col, outCol });
|
---|
462 | var regPrb = new RegressionProblemData(ds, new[] { "in1", "in2" }, "out") {
|
---|
463 | TrainingPartition = { Start = 0, End = Math.Min(50, sample.Count) },
|
---|
464 | TestPartition = { Start = Math.Min(50, sample.Count), End = sample.Count }
|
---|
465 | };
|
---|
466 | return regPrb;
|
---|
467 | }
|
---|
468 |
|
---|
469 | protected static IConfidenceRegressionSolution RunRegression(RegressionProblemData trainingData, IConfidenceRegressionModel baseLineModel = null) {
|
---|
470 | var baseline = baseLineModel != null ? new ConfidenceRegressionSolution(baseLineModel, trainingData) : null;
|
---|
471 | var gpr = new GaussianProcessRegression { Problem = { ProblemData = trainingData } };
|
---|
472 | if (trainingData.InputVariables.CheckedItems.Any(x => alglib.pearsoncorr2(trainingData.Dataset.GetDoubleValues(x.Value.Value).ToArray(), trainingData.TargetVariableValues.ToArray()) > 0.8)) {
|
---|
473 | gpr.MeanFunction = new MeanZero();
|
---|
474 | var cov1 = new CovarianceSum();
|
---|
475 | cov1.Terms.Add(new CovarianceLinearArd());
|
---|
476 | cov1.Terms.Add(new CovarianceConst());
|
---|
477 | gpr.CovarianceFunction = cov1;
|
---|
478 | }
|
---|
479 | IConfidenceRegressionSolution solution = null;
|
---|
480 | var cnt = 0;
|
---|
481 | do {
|
---|
482 | ExecuteAlgorithm(gpr);
|
---|
483 | solution = (IConfidenceRegressionSolution)gpr.Results["Solution"].Value;
|
---|
484 | cnt++;
|
---|
485 | } while (cnt < 10 && (solution == null || solution.TrainingRSquared.IsAlmost(0)));
|
---|
486 | if (baseline == null) return solution;
|
---|
487 | if (trainingData.Dataset.Rows < 60)
|
---|
488 | return solution.TrainingMeanAbsoluteError < baseline.TrainingMeanAbsoluteError ? solution : baseline;
|
---|
489 | return solution.TestMeanAbsoluteError < baseline.TestMeanAbsoluteError ? solution : baseline;
|
---|
490 | }
|
---|
491 |
|
---|
492 | protected static void ExecuteAlgorithm(IAlgorithm algorithm) {
|
---|
493 | using (var evt = new AutoResetEvent(false)) {
|
---|
494 | EventHandler exeStateChanged = (o, args) => {
|
---|
495 | if (algorithm.ExecutionState == ExecutionState.Paused || algorithm.ExecutionState == ExecutionState.Stopped)
|
---|
496 | evt.Set();
|
---|
497 | };
|
---|
498 | algorithm.ExecutionStateChanged += exeStateChanged;
|
---|
499 | algorithm.Prepare(true);
|
---|
500 | algorithm.Start();
|
---|
501 | evt.WaitOne();
|
---|
502 | algorithm.ExecutionStateChanged -= exeStateChanged;
|
---|
503 | }
|
---|
504 | }
|
---|
505 |
|
---|
506 | private double ProbabilityAccept2dModel(double a, IConfidenceRegressionModel model) {
|
---|
507 | var ds = new Dataset(new[] { "in", "out" }, new[] { new List<double> { a }, new List<double> { double.NaN } });
|
---|
508 | var mean = model.GetEstimatedValues(ds, new[] { 0 }).Single();
|
---|
509 | var sdev = Math.Sqrt(model.GetEstimatedVariances(ds, new[] { 0 }).Single());
|
---|
510 |
|
---|
511 | var goal = Problem.Maximization ? Population.Min(x => x.Fitness) : Population.Max(x => x.Fitness);
|
---|
512 | var z = (goal - mean) / sdev;
|
---|
513 | return Problem.Maximization ? 1.0 - Phi(z) /* P(X >= z) */ : Phi(z); // P(X <= z)
|
---|
514 | }
|
---|
515 |
|
---|
516 | private double ProbabilityAccept3dModel(double a, double b, IConfidenceRegressionModel model) {
|
---|
517 | var ds = new Dataset(new[] { "in1", "in2", "out" }, new[] { new List<double> { a }, new List<double> { b }, new List<double> { double.NaN } });
|
---|
518 | var mean = model.GetEstimatedValues(ds, new[] { 0 }).Single();
|
---|
519 | var sdev = Math.Sqrt(model.GetEstimatedVariances(ds, new[] { 0 }).Single());
|
---|
520 |
|
---|
521 | var goal = Problem.Maximization ? Population.Min(x => x.Fitness) : Population.Max(x => x.Fitness);
|
---|
522 | var z = (goal - mean) / sdev;
|
---|
523 | return Problem.Maximization ? 1.0 - Phi(z) /* P(X >= z) */ : Phi(z); // P(X <= z)
|
---|
524 | }
|
---|
525 |
|
---|
526 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
527 | public bool IsBetter(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b) {
|
---|
528 | return IsBetter(a.Fitness, b.Fitness);
|
---|
529 | }
|
---|
530 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
531 | public bool IsBetter(double a, double b) {
|
---|
532 | return double.IsNaN(b) && !double.IsNaN(a)
|
---|
533 | || Problem.Maximization && a > b
|
---|
534 | || !Problem.Maximization && a < b;
|
---|
535 | }
|
---|
536 |
|
---|
537 | public void AddBreedingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, ISingleObjectiveSolutionScope<TSolution> child) {
|
---|
538 | if (IsBetter(a, b))
|
---|
539 | BreedingStat.Add(Tuple.Create(a.Fitness, b.Fitness, child.Fitness));
|
---|
540 | else BreedingStat.Add(Tuple.Create(b.Fitness, a.Fitness, child.Fitness));
|
---|
541 | }
|
---|
542 |
|
---|
543 | public void AddRelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, ISingleObjectiveSolutionScope<TSolution> child) {
|
---|
544 | if (IsBetter(a, b))
|
---|
545 | RelinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, child.Fitness));
|
---|
546 | else RelinkingStat.Add(Tuple.Create(b.Fitness, a.Fitness, child.Fitness));
|
---|
547 | }
|
---|
548 |
|
---|
549 | public void AddDelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, ISingleObjectiveSolutionScope<TSolution> child) {
|
---|
550 | if (IsBetter(a, b))
|
---|
551 | DelinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, child.Fitness));
|
---|
552 | else DelinkingStat.Add(Tuple.Create(b.Fitness, a.Fitness, child.Fitness));
|
---|
553 | }
|
---|
554 |
|
---|
555 | public void AddSamplingResult(ISingleObjectiveSolutionScope<TSolution> sample) {
|
---|
556 | SamplingStat.Add(Tuple.Create(Population.Average(x => x.Fitness), sample.Fitness));
|
---|
557 | }
|
---|
558 |
|
---|
559 | public void AddHillclimbingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) {
|
---|
560 | HillclimbingStat.Add(Tuple.Create(input.Fitness, outcome.Fitness));
|
---|
561 | }
|
---|
562 |
|
---|
563 | public void AddTabuwalkingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) {
|
---|
564 | AdaptivewalkingStat.Add(Tuple.Create(input.Fitness, outcome.Fitness));
|
---|
565 | }
|
---|
566 |
|
---|
567 | #region IExecutionContext members
|
---|
568 | public IAtomicOperation CreateOperation(IOperator op) {
|
---|
569 | return new ExecutionContext(this, op, Scope);
|
---|
570 | }
|
---|
571 |
|
---|
572 | public IAtomicOperation CreateOperation(IOperator op, IScope s) {
|
---|
573 | return new ExecutionContext(this, op, s);
|
---|
574 | }
|
---|
575 |
|
---|
576 | public IAtomicOperation CreateChildOperation(IOperator op) {
|
---|
577 | return new ExecutionContext(this, op, Scope);
|
---|
578 | }
|
---|
579 |
|
---|
580 | public IAtomicOperation CreateChildOperation(IOperator op, IScope s) {
|
---|
581 | return new ExecutionContext(this, op, s);
|
---|
582 | }
|
---|
583 | #endregion
|
---|
584 |
|
---|
585 | #region Math Helper
|
---|
586 | // normal distribution CDF (left of x) for N(0;1) standard normal distribution
|
---|
587 | // from http://www.johndcook.com/blog/csharp_phi/
|
---|
588 | // license: "This code is in the public domain. Do whatever you want with it, no strings attached."
|
---|
589 | // added: 2016-11-19 21:46 CET
|
---|
590 | protected static double Phi(double x) {
|
---|
591 | // constants
|
---|
592 | double a1 = 0.254829592;
|
---|
593 | double a2 = -0.284496736;
|
---|
594 | double a3 = 1.421413741;
|
---|
595 | double a4 = -1.453152027;
|
---|
596 | double a5 = 1.061405429;
|
---|
597 | double p = 0.3275911;
|
---|
598 |
|
---|
599 | // Save the sign of x
|
---|
600 | int sign = 1;
|
---|
601 | if (x < 0)
|
---|
602 | sign = -1;
|
---|
603 | x = Math.Abs(x) / Math.Sqrt(2.0);
|
---|
604 |
|
---|
605 | // A&S formula 7.1.26
|
---|
606 | double t = 1.0 / (1.0 + p * x);
|
---|
607 | double y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * Math.Exp(-x * x);
|
---|
608 |
|
---|
609 | return 0.5 * (1.0 + sign * y);
|
---|
610 | }
|
---|
611 | #endregion
|
---|
612 | }
|
---|
613 |
|
---|
614 | [Item("SingleSolutionMemPRContext", "Abstract base class for single solution MemPR contexts.")]
|
---|
615 | [StorableClass]
|
---|
616 | public abstract class MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> : ParameterizedNamedItem,
|
---|
617 | ISingleSolutionHeuristicAlgorithmContext<TProblem, TSolution>
|
---|
618 | where TProblem : class, IItem, ISingleObjectiveProblemDefinition
|
---|
619 | where TSolution : class, IItem
|
---|
620 | where TContext : MemPRPopulationContext<TProblem, TSolution, TContext, TSolutionContext>
|
---|
621 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> {
|
---|
622 |
|
---|
623 | private TContext parent;
|
---|
624 | public IExecutionContext Parent {
|
---|
625 | get { return parent; }
|
---|
626 | set { throw new InvalidOperationException("Cannot set the parent of a single-solution context."); }
|
---|
627 | }
|
---|
628 |
|
---|
629 | [Storable]
|
---|
630 | private ISingleObjectiveSolutionScope<TSolution> scope;
|
---|
631 | public IScope Scope {
|
---|
632 | get { return scope; }
|
---|
633 | }
|
---|
634 |
|
---|
635 | IKeyedItemCollection<string, IParameter> IExecutionContext.Parameters {
|
---|
636 | get { return Parameters; }
|
---|
637 | }
|
---|
638 |
|
---|
639 | public TProblem Problem {
|
---|
640 | get { return parent.Problem; }
|
---|
641 | }
|
---|
642 |
|
---|
643 | public double BestQuality {
|
---|
644 | get { return parent.BestQuality; }
|
---|
645 | set { parent.BestQuality = value; }
|
---|
646 | }
|
---|
647 |
|
---|
648 | public TSolution BestSolution {
|
---|
649 | get { return parent.BestSolution; }
|
---|
650 | set { parent.BestSolution = value; }
|
---|
651 | }
|
---|
652 |
|
---|
653 | public IRandom Random {
|
---|
654 | get { return parent.Random; }
|
---|
655 | }
|
---|
656 |
|
---|
657 | [Storable]
|
---|
658 | private IValueParameter<IntValue> evaluatedSolutions;
|
---|
659 | public int EvaluatedSolutions {
|
---|
660 | get { return evaluatedSolutions.Value.Value; }
|
---|
661 | set { evaluatedSolutions.Value.Value = value; }
|
---|
662 | }
|
---|
663 |
|
---|
664 | [Storable]
|
---|
665 | private IValueParameter<IntValue> iterations;
|
---|
666 | public int Iterations {
|
---|
667 | get { return iterations.Value.Value; }
|
---|
668 | set { iterations.Value.Value = value; }
|
---|
669 | }
|
---|
670 |
|
---|
671 | ISingleObjectiveSolutionScope<TSolution> ISingleSolutionHeuristicAlgorithmContext<TProblem, TSolution>.Solution {
|
---|
672 | get { return scope; }
|
---|
673 | }
|
---|
674 |
|
---|
675 | [StorableConstructor]
|
---|
676 | protected MemPRSolutionContext(bool deserializing) : base(deserializing) { }
|
---|
677 | protected MemPRSolutionContext(MemPRSolutionContext<TProblem, TSolution, TContext, TSolutionContext> original, Cloner cloner)
|
---|
678 | : base(original, cloner) {
|
---|
679 | scope = cloner.Clone(original.scope);
|
---|
680 | evaluatedSolutions = cloner.Clone(original.evaluatedSolutions);
|
---|
681 | iterations = cloner.Clone(original.iterations);
|
---|
682 | }
|
---|
683 | public MemPRSolutionContext(TContext baseContext, ISingleObjectiveSolutionScope<TSolution> solution) {
|
---|
684 | parent = baseContext;
|
---|
685 | scope = solution;
|
---|
686 |
|
---|
687 | Parameters.Add(evaluatedSolutions = new ValueParameter<IntValue>("EvaluatedSolutions", new IntValue(0)));
|
---|
688 | Parameters.Add(iterations = new ValueParameter<IntValue>("Iterations", new IntValue(0)));
|
---|
689 | }
|
---|
690 |
|
---|
691 | public void IncrementEvaluatedSolutions(int byEvaluations) {
|
---|
692 | if (byEvaluations < 0) throw new ArgumentException("Can only increment and not decrement evaluated solutions.");
|
---|
693 | EvaluatedSolutions += byEvaluations;
|
---|
694 | }
|
---|
695 |
|
---|
696 | #region IExecutionContext members
|
---|
697 | public IAtomicOperation CreateOperation(IOperator op) {
|
---|
698 | return new ExecutionContext(this, op, Scope);
|
---|
699 | }
|
---|
700 |
|
---|
701 | public IAtomicOperation CreateOperation(IOperator op, IScope s) {
|
---|
702 | return new ExecutionContext(this, op, s);
|
---|
703 | }
|
---|
704 |
|
---|
705 | public IAtomicOperation CreateChildOperation(IOperator op) {
|
---|
706 | return new ExecutionContext(this, op, Scope);
|
---|
707 | }
|
---|
708 |
|
---|
709 | public IAtomicOperation CreateChildOperation(IOperator op, IScope s) {
|
---|
710 | return new ExecutionContext(this, op, s);
|
---|
711 | }
|
---|
712 | #endregion
|
---|
713 | }
|
---|
714 | }
|
---|