1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.ComponentModel;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
28 | using HeuristicLab.Analysis;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Algorithms.MemPR {
|
---|
38 | [Item("MemPR Algorithm", "Base class for MemPR algorithms")]
|
---|
39 | [StorableClass]
|
---|
40 | public abstract class MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> : BasicAlgorithm, INotifyPropertyChanged
|
---|
41 | where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem, ISingleObjectiveProblemDefinition
|
---|
42 | where TSolution : class, IItem
|
---|
43 | where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>, new()
|
---|
44 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
|
---|
45 | private const double MutationProbabilityMagicConst = 0.1;
|
---|
46 |
|
---|
47 | public override Type ProblemType {
|
---|
48 | get { return typeof(TProblem); }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public new TProblem Problem {
|
---|
52 | get { return (TProblem)base.Problem; }
|
---|
53 | set { base.Problem = value; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | protected string QualityName {
|
---|
57 | get { return Problem != null && Problem.Evaluator != null ? Problem.Evaluator.QualityParameter.ActualName : null; }
|
---|
58 | }
|
---|
59 |
|
---|
60 | public int? MaximumEvaluations {
|
---|
61 | get {
|
---|
62 | var val = ((OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"]).Value;
|
---|
63 | return val != null ? val.Value : (int?)null;
|
---|
64 | }
|
---|
65 | set {
|
---|
66 | var param = (OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"];
|
---|
67 | param.Value = value.HasValue ? new IntValue(value.Value) : null;
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public TimeSpan? MaximumExecutionTime {
|
---|
72 | get {
|
---|
73 | var val = ((OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"]).Value;
|
---|
74 | return val != null ? val.Value : (TimeSpan?)null;
|
---|
75 | }
|
---|
76 | set {
|
---|
77 | var param = (OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"];
|
---|
78 | param.Value = value.HasValue ? new TimeSpanValue(value.Value) : null;
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public double? TargetQuality {
|
---|
83 | get {
|
---|
84 | var val = ((OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"]).Value;
|
---|
85 | return val != null ? val.Value : (double?)null;
|
---|
86 | }
|
---|
87 | set {
|
---|
88 | var param = (OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"];
|
---|
89 | param.Value = value.HasValue ? new DoubleValue(value.Value) : null;
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | protected FixedValueParameter<IntValue> MaximumPopulationSizeParameter {
|
---|
94 | get { return ((FixedValueParameter<IntValue>)Parameters["MaximumPopulationSize"]); }
|
---|
95 | }
|
---|
96 | public int MaximumPopulationSize {
|
---|
97 | get { return MaximumPopulationSizeParameter.Value.Value; }
|
---|
98 | set { MaximumPopulationSizeParameter.Value.Value = value; }
|
---|
99 | }
|
---|
100 |
|
---|
101 | public bool SetSeedRandomly {
|
---|
102 | get { return ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value; }
|
---|
103 | set { ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value = value; }
|
---|
104 | }
|
---|
105 |
|
---|
106 | public int Seed {
|
---|
107 | get { return ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value; }
|
---|
108 | set { ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value = value; }
|
---|
109 | }
|
---|
110 |
|
---|
111 | public IAnalyzer Analyzer {
|
---|
112 | get { return ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value; }
|
---|
113 | set { ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value = value; }
|
---|
114 | }
|
---|
115 |
|
---|
116 | public IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>> SolutionModelTrainerParameter {
|
---|
117 | get { return (IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>)Parameters["SolutionModelTrainer"]; }
|
---|
118 | }
|
---|
119 |
|
---|
120 | public IConstrainedValueParameter<ILocalSearch<TSolutionContext>> LocalSearchParameter {
|
---|
121 | get { return (IConstrainedValueParameter<ILocalSearch<TSolutionContext>>)Parameters["LocalSearch"]; }
|
---|
122 | }
|
---|
123 |
|
---|
124 | [Storable]
|
---|
125 | private TPopulationContext context;
|
---|
126 | public TPopulationContext Context {
|
---|
127 | get { return context; }
|
---|
128 | protected set {
|
---|
129 | if (context == value) return;
|
---|
130 | context = value;
|
---|
131 | OnPropertyChanged("State");
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | [Storable]
|
---|
136 | private BestAverageWorstQualityAnalyzer qualityAnalyzer;
|
---|
137 |
|
---|
138 | [StorableConstructor]
|
---|
139 | protected MemPRAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
140 | protected MemPRAlgorithm(MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner) : base(original, cloner) {
|
---|
141 | context = cloner.Clone(original.context);
|
---|
142 | qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
|
---|
143 | RegisterEventHandlers();
|
---|
144 | }
|
---|
145 | protected MemPRAlgorithm() {
|
---|
146 | Parameters.Add(new ValueParameter<IAnalyzer>("Analyzer", "The analyzer to apply to the population.", new MultiAnalyzer()));
|
---|
147 | Parameters.Add(new FixedValueParameter<IntValue>("MaximumPopulationSize", "The maximum size of the population that is evolved.", new IntValue(20)));
|
---|
148 | Parameters.Add(new OptionalValueParameter<IntValue>("MaximumEvaluations", "The maximum number of solution evaluations."));
|
---|
149 | Parameters.Add(new OptionalValueParameter<TimeSpanValue>("MaximumExecutionTime", "The maximum runtime.", new TimeSpanValue(TimeSpan.FromMinutes(1))));
|
---|
150 | Parameters.Add(new OptionalValueParameter<DoubleValue>("TargetQuality", "The target quality at which the algorithm terminates."));
|
---|
151 | Parameters.Add(new FixedValueParameter<BoolValue>("SetSeedRandomly", "Whether each run of the algorithm should be conducted with a new random seed.", new BoolValue(true)));
|
---|
152 | Parameters.Add(new FixedValueParameter<IntValue>("Seed", "The random number seed that is used in case SetSeedRandomly is false.", new IntValue(0)));
|
---|
153 | Parameters.Add(new ConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>("SolutionModelTrainer", "The object that creates a solution model that can be sampled."));
|
---|
154 | Parameters.Add(new ConstrainedValueParameter<ILocalSearch<TSolutionContext>>("LocalSearch", "The local search operator to use."));
|
---|
155 |
|
---|
156 | qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
|
---|
157 | RegisterEventHandlers();
|
---|
158 | }
|
---|
159 |
|
---|
160 | [StorableHook(HookType.AfterDeserialization)]
|
---|
161 | private void AfterDeserialization() {
|
---|
162 | RegisterEventHandlers();
|
---|
163 | }
|
---|
164 |
|
---|
165 | private void RegisterEventHandlers() {
|
---|
166 | MaximumPopulationSizeParameter.Value.ValueChanged += MaximumPopulationSizeOnChanged;
|
---|
167 | }
|
---|
168 |
|
---|
169 | private void MaximumPopulationSizeOnChanged(object sender, EventArgs eventArgs) {
|
---|
170 | if (ExecutionState == ExecutionState.Started || ExecutionState == ExecutionState.Paused)
|
---|
171 | throw new InvalidOperationException("Cannot change maximum population size before algorithm finishes.");
|
---|
172 | Prepare();
|
---|
173 | }
|
---|
174 |
|
---|
175 | protected override void OnProblemChanged() {
|
---|
176 | base.OnProblemChanged();
|
---|
177 | qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
178 | qualityAnalyzer.MaximizationParameter.Hidden = true;
|
---|
179 | qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
180 | qualityAnalyzer.QualityParameter.Depth = 1;
|
---|
181 | qualityAnalyzer.QualityParameter.Hidden = true;
|
---|
182 | qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
|
---|
183 | qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
|
---|
184 |
|
---|
185 | var multiAnalyzer = Analyzer as MultiAnalyzer;
|
---|
186 | if (multiAnalyzer != null) {
|
---|
187 | multiAnalyzer.Operators.Clear();
|
---|
188 | if (Problem != null) {
|
---|
189 | foreach (var analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
190 | foreach (var param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
191 | param.Depth = 1;
|
---|
192 | multiAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
193 | }
|
---|
194 | }
|
---|
195 | multiAnalyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 | public override void Prepare() {
|
---|
200 | base.Prepare();
|
---|
201 | Results.Clear();
|
---|
202 | Context = null;
|
---|
203 | }
|
---|
204 |
|
---|
205 | protected virtual TPopulationContext CreateContext() {
|
---|
206 | return new TPopulationContext();
|
---|
207 | }
|
---|
208 |
|
---|
209 | protected sealed override void Run(CancellationToken token) {
|
---|
210 | if (Context == null) {
|
---|
211 | Context = CreateContext();
|
---|
212 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
213 | Context.Random.Reset(Seed);
|
---|
214 | Context.Scope.Variables.Add(new Variable("Results", Results));
|
---|
215 | Context.Problem = Problem;
|
---|
216 | }
|
---|
217 |
|
---|
218 | if (MaximumExecutionTime.HasValue)
|
---|
219 | CancellationTokenSource.CancelAfter(MaximumExecutionTime.Value);
|
---|
220 |
|
---|
221 | IExecutionContext context = null;
|
---|
222 | foreach (var item in Problem.ExecutionContextItems)
|
---|
223 | context = new Core.ExecutionContext(context, item, Context.Scope);
|
---|
224 | context = new Core.ExecutionContext(context, this, Context.Scope);
|
---|
225 | Context.Parent = context;
|
---|
226 |
|
---|
227 | if (!Context.Initialized) {
|
---|
228 | // We initialize the population with two local optima
|
---|
229 | while (Context.PopulationCount < 2) {
|
---|
230 | var child = Create(token);
|
---|
231 | Context.LocalSearchEvaluations += HillClimb(child, token);
|
---|
232 | Context.AddToPopulation(child);
|
---|
233 | Context.BestQuality = child.Fitness;
|
---|
234 | Analyze(token);
|
---|
235 | token.ThrowIfCancellationRequested();
|
---|
236 | if (Terminate()) return;
|
---|
237 | }
|
---|
238 | Context.LocalSearchEvaluations /= 2;
|
---|
239 | Context.Initialized = true;
|
---|
240 | }
|
---|
241 |
|
---|
242 | while (!Terminate()) {
|
---|
243 | Iterate(token);
|
---|
244 | Analyze(token);
|
---|
245 | token.ThrowIfCancellationRequested();
|
---|
246 | }
|
---|
247 | }
|
---|
248 |
|
---|
249 | private void Iterate(CancellationToken token) {
|
---|
250 | var replaced = false;
|
---|
251 | ISingleObjectiveSolutionScope<TSolution> offspring = null;
|
---|
252 |
|
---|
253 | offspring = Breed(token);
|
---|
254 | if (offspring != null) {
|
---|
255 | if (Context.PopulationCount < MaximumPopulationSize)
|
---|
256 | HillClimb(offspring, token);
|
---|
257 | var replNew = Replace(offspring, token);
|
---|
258 | if (replNew) {
|
---|
259 | replaced = true;
|
---|
260 | Context.ByBreeding++;
|
---|
261 | }
|
---|
262 | }
|
---|
263 |
|
---|
264 | offspring = Relink(token);
|
---|
265 | if (offspring != null) {
|
---|
266 | if (Context.PopulationCount < MaximumPopulationSize)
|
---|
267 | HillClimb(offspring, token);
|
---|
268 | if (Replace(offspring, token)) {
|
---|
269 | replaced = true;
|
---|
270 | Context.ByRelinking++;
|
---|
271 | }
|
---|
272 | }
|
---|
273 |
|
---|
274 | offspring = Delink(token);
|
---|
275 | if (offspring != null) {
|
---|
276 | if (Context.PopulationCount < MaximumPopulationSize)
|
---|
277 | HillClimb(offspring, token);
|
---|
278 | if (Replace(offspring, token)) {
|
---|
279 | replaced = true;
|
---|
280 | Context.ByDelinking++;
|
---|
281 | }
|
---|
282 | }
|
---|
283 |
|
---|
284 | offspring = Sample(token);
|
---|
285 | if (offspring != null) {
|
---|
286 | if (Context.PopulationCount < MaximumPopulationSize)
|
---|
287 | HillClimb(offspring, token);
|
---|
288 | if (Replace(offspring, token)) {
|
---|
289 | replaced = true;
|
---|
290 | Context.BySampling++;
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 | if (!replaced && offspring != null) {
|
---|
295 | if (Context.HillclimbingSuited(offspring)) {
|
---|
296 | HillClimb(offspring, token);
|
---|
297 | if (Replace(offspring, token)) {
|
---|
298 | Context.ByHillclimbing++;
|
---|
299 | replaced = true;
|
---|
300 | }
|
---|
301 | }
|
---|
302 | }
|
---|
303 |
|
---|
304 | if (!replaced) {
|
---|
305 | offspring = (ISingleObjectiveSolutionScope<TSolution>)Context.Population.SampleRandom(Context.Random).Clone();
|
---|
306 | var before = offspring.Fitness;
|
---|
307 | AdaptiveWalk(offspring, Context.LocalSearchEvaluations * 2, token);
|
---|
308 | Context.AdaptivewalkingStat.Add(Tuple.Create(before, offspring.Fitness));
|
---|
309 | if (Context.AdaptivewalkingStat.Count % 10 == 0) Context.RelearnAdaptiveWalkPerformanceModel();
|
---|
310 | if (Replace(offspring, token)) {
|
---|
311 | Context.ByAdaptivewalking++;
|
---|
312 | replaced = true;
|
---|
313 | }
|
---|
314 | }
|
---|
315 |
|
---|
316 | Context.Iterations++;
|
---|
317 | }
|
---|
318 |
|
---|
319 | protected void Analyze(CancellationToken token) {
|
---|
320 | IResult res;
|
---|
321 | if (!Results.TryGetValue("EvaluatedSolutions", out res))
|
---|
322 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
323 | else ((IntValue)res.Value).Value = Context.EvaluatedSolutions;
|
---|
324 | if (!Results.TryGetValue("Iterations", out res))
|
---|
325 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
326 | else ((IntValue)res.Value).Value = Context.Iterations;
|
---|
327 | if (!Results.TryGetValue("LocalSearch Evaluations", out res))
|
---|
328 | Results.Add(new Result("LocalSearch Evaluations", new IntValue(Context.LocalSearchEvaluations)));
|
---|
329 | else ((IntValue)res.Value).Value = Context.LocalSearchEvaluations;
|
---|
330 | if (!Results.TryGetValue("ByBreeding", out res))
|
---|
331 | Results.Add(new Result("ByBreeding", new IntValue(Context.ByBreeding)));
|
---|
332 | else ((IntValue)res.Value).Value = Context.ByBreeding;
|
---|
333 | if (!Results.TryGetValue("ByRelinking", out res))
|
---|
334 | Results.Add(new Result("ByRelinking", new IntValue(Context.ByRelinking)));
|
---|
335 | else ((IntValue)res.Value).Value = Context.ByRelinking;
|
---|
336 | if (!Results.TryGetValue("ByDelinking", out res))
|
---|
337 | Results.Add(new Result("ByDelinking", new IntValue(Context.ByDelinking)));
|
---|
338 | else ((IntValue)res.Value).Value = Context.ByDelinking;
|
---|
339 | if (!Results.TryGetValue("BySampling", out res))
|
---|
340 | Results.Add(new Result("BySampling", new IntValue(Context.BySampling)));
|
---|
341 | else ((IntValue)res.Value).Value = Context.BySampling;
|
---|
342 | if (!Results.TryGetValue("ByHillclimbing", out res))
|
---|
343 | Results.Add(new Result("ByHillclimbing", new IntValue(Context.ByHillclimbing)));
|
---|
344 | else ((IntValue)res.Value).Value = Context.ByHillclimbing;
|
---|
345 | if (!Results.TryGetValue("ByAdaptivewalking", out res))
|
---|
346 | Results.Add(new Result("ByAdaptivewalking", new IntValue(Context.ByAdaptivewalking)));
|
---|
347 | else ((IntValue)res.Value).Value = Context.ByAdaptivewalking;
|
---|
348 |
|
---|
349 | var sp = new ScatterPlot("Breeding Correlation", "");
|
---|
350 | sp.Rows.Add(new ScatterPlotDataRow("Parent1 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item1, x.Item3))) { VisualProperties = { PointSize = 6 }});
|
---|
351 | sp.Rows.Add(new ScatterPlotDataRow("Parent2 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item2, x.Item3))) { VisualProperties = { PointSize = 6 } });
|
---|
352 | if (!Results.TryGetValue("BreedingStat", out res)) {
|
---|
353 | Results.Add(new Result("BreedingStat", sp));
|
---|
354 | } else res.Value = sp;
|
---|
355 |
|
---|
356 | sp = new ScatterPlot("Relinking Correlation", "");
|
---|
357 | sp.Rows.Add(new ScatterPlotDataRow("A vs Relink", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item1, x.Item3))) { VisualProperties = { PointSize = 6 } });
|
---|
358 | sp.Rows.Add(new ScatterPlotDataRow("B vs Relink", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item2, x.Item3))) { VisualProperties = { PointSize = 6 } });
|
---|
359 | if (!Results.TryGetValue("RelinkingStat", out res)) {
|
---|
360 | Results.Add(new Result("RelinkingStat", sp));
|
---|
361 | } else res.Value = sp;
|
---|
362 |
|
---|
363 | sp = new ScatterPlot("Delinking Correlation", "");
|
---|
364 | sp.Rows.Add(new ScatterPlotDataRow("A vs Delink", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item1, x.Item3))) { VisualProperties = { PointSize = 6 } });
|
---|
365 | sp.Rows.Add(new ScatterPlotDataRow("B vs Delink", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item2, x.Item3))) { VisualProperties = { PointSize = 6 } });
|
---|
366 | if (!Results.TryGetValue("DelinkingStat", out res)) {
|
---|
367 | Results.Add(new Result("DelinkingStat", sp));
|
---|
368 | } else res.Value = sp;
|
---|
369 |
|
---|
370 | sp = new ScatterPlot("Sampling Correlation", "");
|
---|
371 | sp.Rows.Add(new ScatterPlotDataRow("AvgFitness vs Sample", "", Context.SamplingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
372 | if (!Results.TryGetValue("SampleStat", out res)) {
|
---|
373 | Results.Add(new Result("SampleStat", sp));
|
---|
374 | } else res.Value = sp;
|
---|
375 |
|
---|
376 | sp = new ScatterPlot("Hillclimbing Correlation", "");
|
---|
377 | sp.Rows.Add(new ScatterPlotDataRow("Start vs End", "", Context.HillclimbingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
378 | if (!Results.TryGetValue("HillclimbingStat", out res)) {
|
---|
379 | Results.Add(new Result("HillclimbingStat", sp));
|
---|
380 | } else res.Value = sp;
|
---|
381 |
|
---|
382 | sp = new ScatterPlot("Adaptivewalking Correlation", "");
|
---|
383 | sp.Rows.Add(new ScatterPlotDataRow("Start vs Best", "", Context.AdaptivewalkingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
384 | if (!Results.TryGetValue("AdaptivewalkingStat", out res)) {
|
---|
385 | Results.Add(new Result("AdaptivewalkingStat", sp));
|
---|
386 | } else res.Value = sp;
|
---|
387 |
|
---|
388 | if (Context.BreedingPerformanceModel != null) {
|
---|
389 | var sol = Context.GetSolution(Context.BreedingPerformanceModel, Context.BreedingStat);
|
---|
390 | if (!Results.TryGetValue("Breeding Performance", out res)) {
|
---|
391 | Results.Add(new Result("Breeding Performance", sol));
|
---|
392 | } else res.Value = sol;
|
---|
393 | }
|
---|
394 | if (Context.RelinkingPerformanceModel != null) {
|
---|
395 | var sol = Context.GetSolution(Context.RelinkingPerformanceModel, Context.RelinkingStat);
|
---|
396 | if (!Results.TryGetValue("Relinking Performance", out res)) {
|
---|
397 | Results.Add(new Result("Relinking Performance", sol));
|
---|
398 | } else res.Value = sol;
|
---|
399 | }
|
---|
400 | if (Context.DelinkingPerformanceModel != null) {
|
---|
401 | var sol = Context.GetSolution(Context.DelinkingPerformanceModel, Context.DelinkingStat);
|
---|
402 | if (!Results.TryGetValue("Delinking Performance", out res)) {
|
---|
403 | Results.Add(new Result("Delinking Performance", sol));
|
---|
404 | } else res.Value = sol;
|
---|
405 | }
|
---|
406 | if (Context.SamplingPerformanceModel != null) {
|
---|
407 | var sol = Context.GetSolution(Context.SamplingPerformanceModel, Context.SamplingStat);
|
---|
408 | if (!Results.TryGetValue("Sampling Performance", out res)) {
|
---|
409 | Results.Add(new Result("Sampling Performance", sol));
|
---|
410 | } else res.Value = sol;
|
---|
411 | }
|
---|
412 | if (Context.HillclimbingPerformanceModel != null) {
|
---|
413 | var sol = Context.GetSolution(Context.HillclimbingPerformanceModel, Context.HillclimbingStat);
|
---|
414 | if (!Results.TryGetValue("Hillclimbing Performance", out res)) {
|
---|
415 | Results.Add(new Result("Hillclimbing Performance", sol));
|
---|
416 | } else res.Value = sol;
|
---|
417 | }
|
---|
418 | if (Context.AdaptiveWalkPerformanceModel != null) {
|
---|
419 | var sol = Context.GetSolution(Context.AdaptiveWalkPerformanceModel, Context.AdaptivewalkingStat);
|
---|
420 | if (!Results.TryGetValue("Adaptivewalk Performance", out res)) {
|
---|
421 | Results.Add(new Result("Adaptivewalk Performance", sol));
|
---|
422 | } else res.Value = sol;
|
---|
423 | }
|
---|
424 |
|
---|
425 | RunOperator(Analyzer, Context.Scope, token);
|
---|
426 | }
|
---|
427 |
|
---|
428 | protected bool Replace(ISingleObjectiveSolutionScope<TSolution> child, CancellationToken token) {
|
---|
429 | if (double.IsNaN(child.Fitness)) {
|
---|
430 | Evaluate(child, token);
|
---|
431 | Context.IncrementEvaluatedSolutions(1);
|
---|
432 | }
|
---|
433 | if (Context.IsBetter(child.Fitness, Context.BestQuality)) {
|
---|
434 | Context.BestQuality = child.Fitness;
|
---|
435 | Context.BestSolution = (TSolution)child.Solution.Clone();
|
---|
436 | }
|
---|
437 |
|
---|
438 | var popSize = MaximumPopulationSize;
|
---|
439 | if (Context.Population.All(p => !Eq(p, child))) {
|
---|
440 |
|
---|
441 | if (Context.PopulationCount < popSize) {
|
---|
442 | Context.AddToPopulation(child);
|
---|
443 | return true;// Context.PopulationCount - 1;
|
---|
444 | }
|
---|
445 |
|
---|
446 | // The set of replacement candidates consists of all solutions at least as good as the new one
|
---|
447 | var candidates = Context.Population.Select((p, i) => new { Index = i, Individual = p })
|
---|
448 | .Where(x => x.Individual.Fitness == child.Fitness
|
---|
449 | || Context.IsBetter(child, x.Individual)).ToList();
|
---|
450 | if (candidates.Count == 0) return false;// -1;
|
---|
451 |
|
---|
452 | var repCand = -1;
|
---|
453 | var avgChildDist = 0.0;
|
---|
454 | var minChildDist = double.MaxValue;
|
---|
455 | var plateau = new List<int>();
|
---|
456 | var worstPlateau = -1;
|
---|
457 | var minAvgPlateauDist = double.MaxValue;
|
---|
458 | var minPlateauDist = double.MaxValue;
|
---|
459 | // If there are equally good solutions it is first tried to replace one of those
|
---|
460 | // The criteria for replacement is that the new solution has better average distance
|
---|
461 | // to all other solutions at this "plateau"
|
---|
462 | foreach (var c in candidates.Where(x => x.Individual.Fitness == child.Fitness)) {
|
---|
463 | var dist = Dist(c.Individual, child);
|
---|
464 | avgChildDist += dist;
|
---|
465 | if (dist < minChildDist) minChildDist = dist;
|
---|
466 | plateau.Add(c.Index);
|
---|
467 | }
|
---|
468 | if (plateau.Count > 2) {
|
---|
469 | avgChildDist /= plateau.Count;
|
---|
470 | foreach (var p in plateau) {
|
---|
471 | var avgDist = 0.0;
|
---|
472 | var minDist = double.MaxValue;
|
---|
473 | foreach (var q in plateau) {
|
---|
474 | if (p == q) continue;
|
---|
475 | var dist = Dist(Context.AtPopulation(p), Context.AtPopulation(q));
|
---|
476 | avgDist += dist;
|
---|
477 | if (dist < minDist) minDist = dist;
|
---|
478 | }
|
---|
479 |
|
---|
480 | var d = Dist(Context.AtPopulation(p), child);
|
---|
481 | avgDist += d;
|
---|
482 | avgDist /= plateau.Count;
|
---|
483 | if (d < minDist) minDist = d;
|
---|
484 |
|
---|
485 | if (minDist < minPlateauDist || (minDist == minPlateauDist && avgDist < avgChildDist)) {
|
---|
486 | minAvgPlateauDist = avgDist;
|
---|
487 | minPlateauDist = minDist;
|
---|
488 | worstPlateau = p;
|
---|
489 | }
|
---|
490 | }
|
---|
491 | if (minPlateauDist < minChildDist || (minPlateauDist == minChildDist && minAvgPlateauDist < avgChildDist))
|
---|
492 | repCand = worstPlateau;
|
---|
493 | }
|
---|
494 |
|
---|
495 | if (repCand < 0) {
|
---|
496 | // If no solution at the same plateau were identified for replacement
|
---|
497 | // a worse solution with smallest distance is chosen
|
---|
498 | var minDist = double.MaxValue;
|
---|
499 | foreach (var c in candidates.Where(x => Context.IsBetter(child, x.Individual))) {
|
---|
500 | var d = Dist(c.Individual, child);
|
---|
501 | if (d < minDist) {
|
---|
502 | minDist = d;
|
---|
503 | repCand = c.Index;
|
---|
504 | }
|
---|
505 | }
|
---|
506 | }
|
---|
507 |
|
---|
508 | // If no replacement was identified, this can only mean that there are
|
---|
509 | // no worse solutions and those on the same plateau are all better
|
---|
510 | // stretched out than the new one
|
---|
511 | if (repCand < 0) return false;// -1;
|
---|
512 |
|
---|
513 | Context.ReplaceAtPopulation(repCand, child);
|
---|
514 | return true;// repCand;
|
---|
515 | }
|
---|
516 | return false;// -1;
|
---|
517 | }
|
---|
518 |
|
---|
519 | protected abstract bool Eq(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b);
|
---|
520 | protected abstract double Dist(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b);
|
---|
521 | protected abstract ISingleObjectiveSolutionScope<TSolution> ToScope(TSolution code, double fitness = double.NaN);
|
---|
522 | protected abstract ISolutionSubspace<TSolution> CalculateSubspace(IEnumerable<TSolution> solutions, bool inverse = false);
|
---|
523 | protected virtual void Evaluate(ISingleObjectiveSolutionScope<TSolution> scope, CancellationToken token) {
|
---|
524 | var prob = Problem as ISingleObjectiveProblemDefinition;
|
---|
525 | if (prob != null) {
|
---|
526 | var ind = new SingleEncodingIndividual(prob.Encoding, scope);
|
---|
527 | scope.Fitness = prob.Evaluate(ind, Context.Random);
|
---|
528 | } else RunOperator(Problem.Evaluator, scope, token);
|
---|
529 | }
|
---|
530 |
|
---|
531 | #region Create
|
---|
532 | protected virtual ISingleObjectiveSolutionScope<TSolution> Create(CancellationToken token) {
|
---|
533 | var child = ToScope(null);
|
---|
534 | RunOperator(Problem.SolutionCreator, child, token);
|
---|
535 | return child;
|
---|
536 | }
|
---|
537 | #endregion
|
---|
538 |
|
---|
539 | #region Improve
|
---|
540 | protected virtual int HillClimb(ISingleObjectiveSolutionScope<TSolution> scope, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
541 | if (double.IsNaN(scope.Fitness)) {
|
---|
542 | Evaluate(scope, token);
|
---|
543 | Context.IncrementEvaluatedSolutions(1);
|
---|
544 | }
|
---|
545 | var before = scope.Fitness;
|
---|
546 | var lscontext = Context.CreateSingleSolutionContext(scope);
|
---|
547 | LocalSearchParameter.Value.Optimize(lscontext);
|
---|
548 | var after = scope.Fitness;
|
---|
549 | Context.HillclimbingStat.Add(Tuple.Create(before, after));
|
---|
550 | if (Context.HillclimbingStat.Count % 10 == 0) Context.RelearnHillclimbingPerformanceModel();
|
---|
551 | Context.IncrementEvaluatedSolutions(lscontext.EvaluatedSolutions);
|
---|
552 | return lscontext.EvaluatedSolutions;
|
---|
553 | }
|
---|
554 |
|
---|
555 | protected virtual void AdaptiveClimb(ISingleObjectiveSolutionScope<TSolution> scope, int maxEvals, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
556 | if (double.IsNaN(scope.Fitness)) {
|
---|
557 | Evaluate(scope, token);
|
---|
558 | Context.IncrementEvaluatedSolutions(1);
|
---|
559 | }
|
---|
560 | var before = scope.Fitness;
|
---|
561 | var newScope = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
562 | AdaptiveWalk(newScope, maxEvals, token, subspace);
|
---|
563 | Context.AdaptivewalkingStat.Add(Tuple.Create(before, newScope.Fitness));
|
---|
564 | if (Context.AdaptivewalkingStat.Count % 10 == 0) Context.RelearnAdaptiveWalkPerformanceModel();
|
---|
565 | if (Context.IsBetter(newScope, scope))
|
---|
566 | scope.Adopt(newScope);
|
---|
567 | }
|
---|
568 | protected abstract void AdaptiveWalk(ISingleObjectiveSolutionScope<TSolution> scope, int maxEvals, CancellationToken token, ISolutionSubspace<TSolution> subspace = null);
|
---|
569 |
|
---|
570 | #endregion
|
---|
571 |
|
---|
572 | #region Breed
|
---|
573 | protected virtual ISingleObjectiveSolutionScope<TSolution> Breed(CancellationToken token) {
|
---|
574 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
575 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
576 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
577 |
|
---|
578 | var p1 = Context.AtPopulation(i1);
|
---|
579 | var p2 = Context.AtPopulation(i2);
|
---|
580 |
|
---|
581 | if (double.IsNaN(p1.Fitness)) {
|
---|
582 | Evaluate(p1, token);
|
---|
583 | Context.IncrementEvaluatedSolutions(1);
|
---|
584 | }
|
---|
585 | if (double.IsNaN(p2.Fitness)) {
|
---|
586 | Evaluate(p2, token);
|
---|
587 | Context.IncrementEvaluatedSolutions(1);
|
---|
588 | }
|
---|
589 |
|
---|
590 | if (Context.BreedingSuited(p1, p2)) {
|
---|
591 | var offspring = Breed(p1, p2, token);
|
---|
592 |
|
---|
593 | if (double.IsNaN(offspring.Fitness)) {
|
---|
594 | Evaluate(offspring, token);
|
---|
595 | Context.IncrementEvaluatedSolutions(1);
|
---|
596 | }
|
---|
597 |
|
---|
598 | // new best solutions are improved using hill climbing in full solution space
|
---|
599 | if (Context.Population.All(p => Context.IsBetter(offspring, p)))
|
---|
600 | HillClimb(offspring, token);
|
---|
601 | else HillClimb(offspring, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }));
|
---|
602 |
|
---|
603 | Context.AddBreedingResult(p1, p2, offspring);
|
---|
604 | if (Context.BreedingStat.Count % 10 == 0) Context.RelearnBreedingPerformanceModel();
|
---|
605 | return offspring;
|
---|
606 | }
|
---|
607 | return null;
|
---|
608 | }
|
---|
609 |
|
---|
610 | protected abstract ISingleObjectiveSolutionScope<TSolution> Breed(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, CancellationToken token);
|
---|
611 | #endregion
|
---|
612 |
|
---|
613 | #region Relink/Delink
|
---|
614 | protected virtual ISingleObjectiveSolutionScope<TSolution> Relink(CancellationToken token) {
|
---|
615 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
616 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
617 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
618 |
|
---|
619 | var p1 = Context.AtPopulation(i1);
|
---|
620 | var p2 = Context.AtPopulation(i2);
|
---|
621 |
|
---|
622 | return Context.RelinkSuited(p1, p2) ? PerformRelinking(p1, p2, token, delink: false) : null;
|
---|
623 | }
|
---|
624 |
|
---|
625 | protected virtual ISingleObjectiveSolutionScope<TSolution> Delink(CancellationToken token) {
|
---|
626 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
627 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
628 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
629 |
|
---|
630 | var p1 = Context.AtPopulation(i1);
|
---|
631 | var p2 = Context.AtPopulation(i2);
|
---|
632 |
|
---|
633 | return Context.DelinkSuited(p1, p2) ? PerformRelinking(p1, p2, token, delink: true) : null;
|
---|
634 | }
|
---|
635 |
|
---|
636 | protected virtual ISingleObjectiveSolutionScope<TSolution> PerformRelinking(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token, bool delink = false) {
|
---|
637 | var relink = Link(a, b, token, delink);
|
---|
638 |
|
---|
639 | if (double.IsNaN(relink.Fitness)) {
|
---|
640 | Evaluate(relink, token);
|
---|
641 | Context.IncrementEvaluatedSolutions(1);
|
---|
642 | }
|
---|
643 |
|
---|
644 | // new best solutions are improved using hill climbing
|
---|
645 | if (Context.Population.All(p => Context.IsBetter(relink, p)))
|
---|
646 | HillClimb(relink, token);
|
---|
647 |
|
---|
648 | if (delink) {
|
---|
649 | Context.AddDelinkingResult(a, b, relink);
|
---|
650 | if (Context.DelinkingStat.Count % 10 == 0) Context.RelearnDelinkingPerformanceModel();
|
---|
651 | } else {
|
---|
652 | Context.AddRelinkingResult(a, b, relink);
|
---|
653 | if (context.RelinkingStat.Count % 10 == 0) Context.RelearnRelinkingPerformanceModel();
|
---|
654 | }
|
---|
655 | return relink;
|
---|
656 | }
|
---|
657 |
|
---|
658 | protected abstract ISingleObjectiveSolutionScope<TSolution> Link(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token, bool delink = false);
|
---|
659 | #endregion
|
---|
660 |
|
---|
661 | #region Sample
|
---|
662 | protected virtual ISingleObjectiveSolutionScope<TSolution> Sample(CancellationToken token) {
|
---|
663 | if (Context.PopulationCount == MaximumPopulationSize && Context.SamplingSuited()) {
|
---|
664 | SolutionModelTrainerParameter.Value.TrainModel(Context);
|
---|
665 | ISingleObjectiveSolutionScope<TSolution> bestSample = null;
|
---|
666 | var tries = 1;
|
---|
667 | for (; tries < Context.LocalSearchEvaluations; tries++) {
|
---|
668 | var sample = ToScope(Context.Model.Sample());
|
---|
669 | Evaluate(sample, token);
|
---|
670 | if (bestSample == null || Context.IsBetter(sample, bestSample)) {
|
---|
671 | bestSample = sample;
|
---|
672 | }
|
---|
673 | if (Context.Population.Any(x => !Context.IsBetter(x, bestSample))) break;
|
---|
674 | }
|
---|
675 | Context.IncrementEvaluatedSolutions(tries);
|
---|
676 | Context.AddSamplingResult(bestSample);
|
---|
677 | if (Context.SamplingStat.Count % 10 == 0) Context.RelearnSamplingPerformanceModel();
|
---|
678 | return bestSample;
|
---|
679 | }
|
---|
680 | return null;
|
---|
681 | }
|
---|
682 | #endregion
|
---|
683 |
|
---|
684 | protected virtual bool Terminate() {
|
---|
685 | return MaximumEvaluations.HasValue && Context.EvaluatedSolutions >= MaximumEvaluations.Value
|
---|
686 | || MaximumExecutionTime.HasValue && ExecutionTime >= MaximumExecutionTime.Value
|
---|
687 | || TargetQuality.HasValue && (Problem.Maximization && Context.BestQuality >= TargetQuality.Value
|
---|
688 | || !Problem.Maximization && Context.BestQuality <= TargetQuality.Value);
|
---|
689 | }
|
---|
690 |
|
---|
691 | public event PropertyChangedEventHandler PropertyChanged;
|
---|
692 | protected void OnPropertyChanged(string property) {
|
---|
693 | var handler = PropertyChanged;
|
---|
694 | if (handler != null) handler(this, new PropertyChangedEventArgs(property));
|
---|
695 | }
|
---|
696 |
|
---|
697 | #region Engine Helper
|
---|
698 | protected void RunOperator(IOperator op, IScope scope, CancellationToken cancellationToken) {
|
---|
699 | var stack = new Stack<IOperation>();
|
---|
700 | stack.Push(Context.CreateChildOperation(op, scope));
|
---|
701 |
|
---|
702 | while (stack.Count > 0) {
|
---|
703 | cancellationToken.ThrowIfCancellationRequested();
|
---|
704 |
|
---|
705 | var next = stack.Pop();
|
---|
706 | if (next is OperationCollection) {
|
---|
707 | var coll = (OperationCollection)next;
|
---|
708 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
709 | if (coll[i] != null) stack.Push(coll[i]);
|
---|
710 | } else if (next is IAtomicOperation) {
|
---|
711 | var operation = (IAtomicOperation)next;
|
---|
712 | try {
|
---|
713 | next = operation.Operator.Execute((IExecutionContext)operation, cancellationToken);
|
---|
714 | } catch (Exception ex) {
|
---|
715 | stack.Push(operation);
|
---|
716 | if (ex is OperationCanceledException) throw ex;
|
---|
717 | else throw new OperatorExecutionException(operation.Operator, ex);
|
---|
718 | }
|
---|
719 | if (next != null) stack.Push(next);
|
---|
720 | }
|
---|
721 | }
|
---|
722 | }
|
---|
723 | #endregion
|
---|
724 | }
|
---|
725 | }
|
---|