1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.ComponentModel;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Runtime.CompilerServices;
|
---|
27 | using System.Threading;
|
---|
28 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
29 | using HeuristicLab.Algorithms.MemPR.Util;
|
---|
30 | using HeuristicLab.Analysis;
|
---|
31 | using HeuristicLab.Common;
|
---|
32 | using HeuristicLab.Core;
|
---|
33 | using HeuristicLab.Data;
|
---|
34 | using HeuristicLab.Optimization;
|
---|
35 | using HeuristicLab.Parameters;
|
---|
36 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
37 |
|
---|
38 | namespace HeuristicLab.Algorithms.MemPR {
|
---|
39 | [Item("MemPR Algorithm", "Base class for MemPR algorithms")]
|
---|
40 | [StorableClass]
|
---|
41 | public abstract class MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> : BasicAlgorithm, INotifyPropertyChanged
|
---|
42 | where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem, ISingleObjectiveProblemDefinition
|
---|
43 | where TSolution : class, IItem
|
---|
44 | where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>, new()
|
---|
45 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
|
---|
46 | private const double MutationProbabilityMagicConst = 0.1;
|
---|
47 |
|
---|
48 | public override Type ProblemType {
|
---|
49 | get { return typeof(TProblem); }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public new TProblem Problem {
|
---|
53 | get { return (TProblem)base.Problem; }
|
---|
54 | set { base.Problem = value; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | protected string QualityName {
|
---|
58 | get { return Problem != null && Problem.Evaluator != null ? Problem.Evaluator.QualityParameter.ActualName : null; }
|
---|
59 | }
|
---|
60 |
|
---|
61 | public int? MaximumEvaluations {
|
---|
62 | get {
|
---|
63 | var val = ((OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"]).Value;
|
---|
64 | return val != null ? val.Value : (int?)null;
|
---|
65 | }
|
---|
66 | set {
|
---|
67 | var param = (OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"];
|
---|
68 | param.Value = value.HasValue ? new IntValue(value.Value) : null;
|
---|
69 | }
|
---|
70 | }
|
---|
71 |
|
---|
72 | public TimeSpan? MaximumExecutionTime {
|
---|
73 | get {
|
---|
74 | var val = ((OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"]).Value;
|
---|
75 | return val != null ? val.Value : (TimeSpan?)null;
|
---|
76 | }
|
---|
77 | set {
|
---|
78 | var param = (OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"];
|
---|
79 | param.Value = value.HasValue ? new TimeSpanValue(value.Value) : null;
|
---|
80 | }
|
---|
81 | }
|
---|
82 |
|
---|
83 | public double? TargetQuality {
|
---|
84 | get {
|
---|
85 | var val = ((OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"]).Value;
|
---|
86 | return val != null ? val.Value : (double?)null;
|
---|
87 | }
|
---|
88 | set {
|
---|
89 | var param = (OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"];
|
---|
90 | param.Value = value.HasValue ? new DoubleValue(value.Value) : null;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | protected FixedValueParameter<IntValue> MaximumPopulationSizeParameter {
|
---|
95 | get { return ((FixedValueParameter<IntValue>)Parameters["MaximumPopulationSize"]); }
|
---|
96 | }
|
---|
97 | public int MaximumPopulationSize {
|
---|
98 | get { return MaximumPopulationSizeParameter.Value.Value; }
|
---|
99 | set { MaximumPopulationSizeParameter.Value.Value = value; }
|
---|
100 | }
|
---|
101 |
|
---|
102 | public bool SetSeedRandomly {
|
---|
103 | get { return ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value; }
|
---|
104 | set { ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value = value; }
|
---|
105 | }
|
---|
106 |
|
---|
107 | public int Seed {
|
---|
108 | get { return ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value; }
|
---|
109 | set { ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value = value; }
|
---|
110 | }
|
---|
111 |
|
---|
112 | public IAnalyzer Analyzer {
|
---|
113 | get { return ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value; }
|
---|
114 | set { ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value = value; }
|
---|
115 | }
|
---|
116 |
|
---|
117 | public IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>> SolutionModelTrainerParameter {
|
---|
118 | get { return (IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>)Parameters["SolutionModelTrainer"]; }
|
---|
119 | }
|
---|
120 |
|
---|
121 | public IConstrainedValueParameter<ILocalSearch<TSolutionContext>> LocalSearchParameter {
|
---|
122 | get { return (IConstrainedValueParameter<ILocalSearch<TSolutionContext>>)Parameters["LocalSearch"]; }
|
---|
123 | }
|
---|
124 |
|
---|
125 | [Storable]
|
---|
126 | private TPopulationContext context;
|
---|
127 | public TPopulationContext Context {
|
---|
128 | get { return context; }
|
---|
129 | protected set {
|
---|
130 | if (context == value) return;
|
---|
131 | context = value;
|
---|
132 | OnPropertyChanged("State");
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | [Storable]
|
---|
137 | private BestAverageWorstQualityAnalyzer qualityAnalyzer;
|
---|
138 |
|
---|
139 | [StorableConstructor]
|
---|
140 | protected MemPRAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
141 | protected MemPRAlgorithm(MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner) : base(original, cloner) {
|
---|
142 | context = cloner.Clone(original.context);
|
---|
143 | qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
|
---|
144 | RegisterEventHandlers();
|
---|
145 | }
|
---|
146 | protected MemPRAlgorithm() {
|
---|
147 | Parameters.Add(new ValueParameter<IAnalyzer>("Analyzer", "The analyzer to apply to the population.", new MultiAnalyzer()));
|
---|
148 | Parameters.Add(new FixedValueParameter<IntValue>("MaximumPopulationSize", "The maximum size of the population that is evolved.", new IntValue(20)));
|
---|
149 | Parameters.Add(new OptionalValueParameter<IntValue>("MaximumEvaluations", "The maximum number of solution evaluations."));
|
---|
150 | Parameters.Add(new OptionalValueParameter<TimeSpanValue>("MaximumExecutionTime", "The maximum runtime.", new TimeSpanValue(TimeSpan.FromMinutes(1))));
|
---|
151 | Parameters.Add(new OptionalValueParameter<DoubleValue>("TargetQuality", "The target quality at which the algorithm terminates."));
|
---|
152 | Parameters.Add(new FixedValueParameter<BoolValue>("SetSeedRandomly", "Whether each run of the algorithm should be conducted with a new random seed.", new BoolValue(true)));
|
---|
153 | Parameters.Add(new FixedValueParameter<IntValue>("Seed", "The random number seed that is used in case SetSeedRandomly is false.", new IntValue(0)));
|
---|
154 | Parameters.Add(new ConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>("SolutionModelTrainer", "The object that creates a solution model that can be sampled."));
|
---|
155 | Parameters.Add(new ConstrainedValueParameter<ILocalSearch<TSolutionContext>>("LocalSearch", "The local search operator to use."));
|
---|
156 |
|
---|
157 | qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
|
---|
158 | RegisterEventHandlers();
|
---|
159 | }
|
---|
160 |
|
---|
161 | [StorableHook(HookType.AfterDeserialization)]
|
---|
162 | private void AfterDeserialization() {
|
---|
163 | RegisterEventHandlers();
|
---|
164 | }
|
---|
165 |
|
---|
166 | private void RegisterEventHandlers() {
|
---|
167 | MaximumPopulationSizeParameter.Value.ValueChanged += MaximumPopulationSizeOnChanged;
|
---|
168 | }
|
---|
169 |
|
---|
170 | private void MaximumPopulationSizeOnChanged(object sender, EventArgs eventArgs) {
|
---|
171 | if (ExecutionState == ExecutionState.Started || ExecutionState == ExecutionState.Paused)
|
---|
172 | throw new InvalidOperationException("Cannot change maximum population size before algorithm finishes.");
|
---|
173 | Prepare();
|
---|
174 | }
|
---|
175 |
|
---|
176 | protected override void OnProblemChanged() {
|
---|
177 | base.OnProblemChanged();
|
---|
178 | qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
179 | qualityAnalyzer.MaximizationParameter.Hidden = true;
|
---|
180 | qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
181 | qualityAnalyzer.QualityParameter.Depth = 1;
|
---|
182 | qualityAnalyzer.QualityParameter.Hidden = true;
|
---|
183 | qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
|
---|
184 | qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
|
---|
185 |
|
---|
186 | var multiAnalyzer = Analyzer as MultiAnalyzer;
|
---|
187 | if (multiAnalyzer != null) {
|
---|
188 | multiAnalyzer.Operators.Clear();
|
---|
189 | if (Problem != null) {
|
---|
190 | foreach (var analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
191 | foreach (var param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
192 | param.Depth = 1;
|
---|
193 | multiAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
194 | }
|
---|
195 | }
|
---|
196 | multiAnalyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 | public override void Prepare() {
|
---|
201 | base.Prepare();
|
---|
202 | Results.Clear();
|
---|
203 | Context = null;
|
---|
204 | }
|
---|
205 |
|
---|
206 | protected virtual TPopulationContext CreateContext() {
|
---|
207 | return new TPopulationContext();
|
---|
208 | }
|
---|
209 |
|
---|
210 | protected sealed override void Run(CancellationToken token) {
|
---|
211 | if (Context == null) {
|
---|
212 | Context = CreateContext();
|
---|
213 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
214 | Context.Random.Reset(Seed);
|
---|
215 | Context.Scope.Variables.Add(new Variable("Results", Results));
|
---|
216 | Context.Problem = Problem;
|
---|
217 | }
|
---|
218 |
|
---|
219 | IExecutionContext context = null;
|
---|
220 | foreach (var item in Problem.ExecutionContextItems)
|
---|
221 | context = new Core.ExecutionContext(context, item, Context.Scope);
|
---|
222 | context = new Core.ExecutionContext(context, this, Context.Scope);
|
---|
223 | Context.Parent = context;
|
---|
224 |
|
---|
225 | if (!Context.Initialized) {
|
---|
226 | // We initialize the population with two local optima
|
---|
227 | while (Context.PopulationCount < 2) {
|
---|
228 | var child = Create(token);
|
---|
229 | Context.HcSteps += HillClimb(child, token);
|
---|
230 | Context.AddToPopulation(child);
|
---|
231 | Analyze(token);
|
---|
232 | token.ThrowIfCancellationRequested();
|
---|
233 | }
|
---|
234 | Context.HcSteps /= 2;
|
---|
235 | Context.Initialized = true;
|
---|
236 | }
|
---|
237 |
|
---|
238 | while (!Terminate()) {
|
---|
239 | Iterate(token);
|
---|
240 | Analyze(token);
|
---|
241 | token.ThrowIfCancellationRequested();
|
---|
242 | }
|
---|
243 | }
|
---|
244 |
|
---|
245 | private void Iterate(CancellationToken token) {
|
---|
246 | var replaced = false;
|
---|
247 |
|
---|
248 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
249 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
250 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
251 |
|
---|
252 | var p1 = Context.AtPopulation(i1);
|
---|
253 | var p2 = Context.AtPopulation(i2);
|
---|
254 |
|
---|
255 | var parentDist = Dist(p1, p2);
|
---|
256 |
|
---|
257 | ISingleObjectiveSolutionScope<TSolution> offspring = null;
|
---|
258 | int replPos = -1;
|
---|
259 |
|
---|
260 | if (Context.Random.NextDouble() > parentDist) {
|
---|
261 | offspring = BreedAndImprove(p1, p2, token);
|
---|
262 | replPos = Replace(offspring, token);
|
---|
263 | if (replPos >= 0) {
|
---|
264 | replaced = true;
|
---|
265 | Context.ByBreeding++;
|
---|
266 | }
|
---|
267 | }
|
---|
268 |
|
---|
269 | if (Context.Random.NextDouble() < parentDist) {
|
---|
270 | offspring = RelinkAndImprove(p1, p2, token);
|
---|
271 | replPos = Replace(offspring, token);
|
---|
272 | if (replPos >= 0) {
|
---|
273 | replaced = true;
|
---|
274 | Context.ByRelinking++;
|
---|
275 | }
|
---|
276 | }
|
---|
277 |
|
---|
278 | offspring = PerformSampling(token);
|
---|
279 | replPos = Replace(offspring, token);
|
---|
280 | if (replPos >= 0) {
|
---|
281 | replaced = true;
|
---|
282 | Context.BySampling++;
|
---|
283 | }
|
---|
284 |
|
---|
285 | if (!replaced) {
|
---|
286 | offspring = Create(token);
|
---|
287 | if (HillclimbingSuited(offspring)) {
|
---|
288 | HillClimb(offspring, token);
|
---|
289 | replPos = Replace(offspring, token);
|
---|
290 | if (replPos >= 0) {
|
---|
291 | Context.ByHillclimbing++;
|
---|
292 | replaced = true;
|
---|
293 | }
|
---|
294 | } else {
|
---|
295 | offspring = (ISingleObjectiveSolutionScope<TSolution>)Context.AtPopulation(Context.Random.Next(Context.PopulationCount)).Clone();
|
---|
296 | Mutate(offspring, token);
|
---|
297 | PerformTabuWalk(offspring, Context.HcSteps, token);
|
---|
298 | replPos = Replace(offspring, token);
|
---|
299 | if (replPos >= 0) {
|
---|
300 | Context.ByTabuwalking++;
|
---|
301 | replaced = true;
|
---|
302 | }
|
---|
303 | }
|
---|
304 | }
|
---|
305 | Context.Iterations++;
|
---|
306 | }
|
---|
307 |
|
---|
308 | protected void Analyze(CancellationToken token) {
|
---|
309 | IResult res;
|
---|
310 | if (!Results.TryGetValue("EvaluatedSolutions", out res))
|
---|
311 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
312 | else ((IntValue)res.Value).Value = Context.EvaluatedSolutions;
|
---|
313 | if (!Results.TryGetValue("Iterations", out res))
|
---|
314 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
315 | else ((IntValue)res.Value).Value = Context.Iterations;
|
---|
316 | if (!Results.TryGetValue("ByBreeding", out res))
|
---|
317 | Results.Add(new Result("ByBreeding", new IntValue(Context.ByBreeding)));
|
---|
318 | else ((IntValue)res.Value).Value = Context.ByBreeding;
|
---|
319 | if (!Results.TryGetValue("ByRelinking", out res))
|
---|
320 | Results.Add(new Result("ByRelinking", new IntValue(Context.ByRelinking)));
|
---|
321 | else ((IntValue)res.Value).Value = Context.ByRelinking;
|
---|
322 | if (!Results.TryGetValue("BySampling", out res))
|
---|
323 | Results.Add(new Result("BySampling", new IntValue(Context.BySampling)));
|
---|
324 | else ((IntValue)res.Value).Value = Context.BySampling;
|
---|
325 | if (!Results.TryGetValue("ByHillclimbing", out res))
|
---|
326 | Results.Add(new Result("ByHillclimbing", new IntValue(Context.ByHillclimbing)));
|
---|
327 | else ((IntValue)res.Value).Value = Context.ByHillclimbing;
|
---|
328 | if (!Results.TryGetValue("ByTabuwalking", out res))
|
---|
329 | Results.Add(new Result("ByTabuwalking", new IntValue(Context.ByTabuwalking)));
|
---|
330 | else ((IntValue)res.Value).Value = Context.ByTabuwalking;
|
---|
331 |
|
---|
332 | var sp = new ScatterPlot("Parent1 vs Offspring", "");
|
---|
333 | sp.Rows.Add(new ScatterPlotDataRow("corr", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item1, x.Item3))) { VisualProperties = { PointSize = 6 }});
|
---|
334 | if (!Results.TryGetValue("BreedingStat1", out res)) {
|
---|
335 | Results.Add(new Result("BreedingStat1", sp));
|
---|
336 | } else res.Value = sp;
|
---|
337 |
|
---|
338 | sp = new ScatterPlot("Parent2 vs Offspring", "");
|
---|
339 | sp.Rows.Add(new ScatterPlotDataRow("corr", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item2, x.Item3))) { VisualProperties = { PointSize = 6 } });
|
---|
340 | if (!Results.TryGetValue("BreedingStat2", out res)) {
|
---|
341 | Results.Add(new Result("BreedingStat2", sp));
|
---|
342 | } else res.Value = sp;
|
---|
343 |
|
---|
344 | sp = new ScatterPlot("Solution vs Local Optimum", "");
|
---|
345 | sp.Rows.Add(new ScatterPlotDataRow("corr", "", Context.HillclimbingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
346 | if (!Results.TryGetValue("HillclimbingStat", out res)) {
|
---|
347 | Results.Add(new Result("HillclimbingStat", sp));
|
---|
348 | } else res.Value = sp;
|
---|
349 |
|
---|
350 | sp = new ScatterPlot("Solution vs Tabu Walk", "");
|
---|
351 | sp.Rows.Add(new ScatterPlotDataRow("corr", "", Context.TabuwalkingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
352 | if (!Results.TryGetValue("TabuwalkingStat", out res)) {
|
---|
353 | Results.Add(new Result("TabuwalkingStat", sp));
|
---|
354 | } else res.Value = sp;
|
---|
355 |
|
---|
356 | RunOperator(Analyzer, Context.Scope, token);
|
---|
357 | }
|
---|
358 |
|
---|
359 | protected int Replace(ISingleObjectiveSolutionScope<TSolution> child, CancellationToken token) {
|
---|
360 | if (double.IsNaN(child.Fitness)) {
|
---|
361 | Evaluate(child, token);
|
---|
362 | Context.IncrementEvaluatedSolutions(1);
|
---|
363 | }
|
---|
364 | if (IsBetter(child.Fitness, Context.BestQuality)) {
|
---|
365 | Context.BestQuality = child.Fitness;
|
---|
366 | Context.BestSolution = (TSolution)child.Solution.Clone();
|
---|
367 | }
|
---|
368 |
|
---|
369 | var popSize = MaximumPopulationSize;
|
---|
370 | if (Context.Population.All(p => !Eq(p, child))) {
|
---|
371 |
|
---|
372 | if (Context.PopulationCount < popSize) {
|
---|
373 | Context.AddToPopulation(child);
|
---|
374 | return Context.PopulationCount - 1;
|
---|
375 | }
|
---|
376 |
|
---|
377 | // The set of replacement candidates consists of all solutions at least as good as the new one
|
---|
378 | var candidates = Context.Population.Select((p, i) => new { Index = i, Individual = p })
|
---|
379 | .Where(x => x.Individual.Fitness == child.Fitness
|
---|
380 | || IsBetter(child, x.Individual)).ToList();
|
---|
381 | if (candidates.Count == 0) return -1;
|
---|
382 |
|
---|
383 | var repCand = -1;
|
---|
384 | var avgChildDist = 0.0;
|
---|
385 | var minChildDist = double.MaxValue;
|
---|
386 | var plateau = new List<int>();
|
---|
387 | var worstPlateau = -1;
|
---|
388 | var minAvgPlateauDist = double.MaxValue;
|
---|
389 | var minPlateauDist = double.MaxValue;
|
---|
390 | // If there are equally good solutions it is first tried to replace one of those
|
---|
391 | // The criteria for replacement is that the new solution has better average distance
|
---|
392 | // to all other solutions at this "plateau"
|
---|
393 | foreach (var c in candidates.Where(x => x.Individual.Fitness == child.Fitness)) {
|
---|
394 | var dist = Dist(c.Individual, child);
|
---|
395 | avgChildDist += dist;
|
---|
396 | if (dist < minChildDist) minChildDist = dist;
|
---|
397 | plateau.Add(c.Index);
|
---|
398 | }
|
---|
399 | if (plateau.Count > 2) {
|
---|
400 | avgChildDist /= plateau.Count;
|
---|
401 | foreach (var p in plateau) {
|
---|
402 | var avgDist = 0.0;
|
---|
403 | var minDist = double.MaxValue;
|
---|
404 | foreach (var q in plateau) {
|
---|
405 | if (p == q) continue;
|
---|
406 | var dist = Dist(Context.AtPopulation(p), Context.AtPopulation(q));
|
---|
407 | avgDist += dist;
|
---|
408 | if (dist < minDist) minDist = dist;
|
---|
409 | }
|
---|
410 |
|
---|
411 | var d = Dist(Context.AtPopulation(p), child);
|
---|
412 | avgDist += d;
|
---|
413 | avgDist /= plateau.Count;
|
---|
414 | if (d < minDist) minDist = d;
|
---|
415 |
|
---|
416 | if (minDist < minPlateauDist || (minDist == minPlateauDist && avgDist < avgChildDist)) {
|
---|
417 | minAvgPlateauDist = avgDist;
|
---|
418 | minPlateauDist = minDist;
|
---|
419 | worstPlateau = p;
|
---|
420 | }
|
---|
421 | }
|
---|
422 | if (minPlateauDist < minChildDist || (minPlateauDist == minChildDist && minAvgPlateauDist < avgChildDist))
|
---|
423 | repCand = worstPlateau;
|
---|
424 | }
|
---|
425 |
|
---|
426 | if (repCand < 0) {
|
---|
427 | // If no solution at the same plateau were identified for replacement
|
---|
428 | // a worse solution with smallest distance is chosen
|
---|
429 | var minDist = double.MaxValue;
|
---|
430 | foreach (var c in candidates.Where(x => IsBetter(child, x.Individual))) {
|
---|
431 | var d = Dist(c.Individual, child);
|
---|
432 | if (d < minDist) {
|
---|
433 | minDist = d;
|
---|
434 | repCand = c.Index;
|
---|
435 | }
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 | // If no replacement was identified, this can only mean that there are
|
---|
440 | // no worse solutions and those on the same plateau are all better
|
---|
441 | // stretched out than the new one
|
---|
442 | if (repCand < 0) return -1;
|
---|
443 |
|
---|
444 | Context.ReplaceAtPopulation(repCand, child);
|
---|
445 | return repCand;
|
---|
446 | }
|
---|
447 | return -1;
|
---|
448 | }
|
---|
449 |
|
---|
450 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
451 | protected bool IsBetter(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b) {
|
---|
452 | return IsBetter(a.Fitness, b.Fitness);
|
---|
453 | }
|
---|
454 | [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
---|
455 | protected bool IsBetter(double a, double b) {
|
---|
456 | return double.IsNaN(b) && !double.IsNaN(a)
|
---|
457 | || Problem.Maximization && a > b
|
---|
458 | || !Problem.Maximization && a < b;
|
---|
459 | }
|
---|
460 |
|
---|
461 | protected abstract bool Eq(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b);
|
---|
462 | protected abstract double Dist(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b);
|
---|
463 | protected abstract ISingleObjectiveSolutionScope<TSolution> ToScope(TSolution code, double fitness = double.NaN);
|
---|
464 | protected abstract ISolutionSubspace<TSolution> CalculateSubspace(IEnumerable<TSolution> solutions, bool inverse = false);
|
---|
465 | protected virtual void Evaluate(ISingleObjectiveSolutionScope<TSolution> scope, CancellationToken token) {
|
---|
466 | var prob = Problem as ISingleObjectiveProblemDefinition;
|
---|
467 | if (prob != null) {
|
---|
468 | var ind = new SingleEncodingIndividual(prob.Encoding, scope);
|
---|
469 | scope.Fitness = prob.Evaluate(ind, Context.Random);
|
---|
470 | } else RunOperator(Problem.Evaluator, scope, token);
|
---|
471 | }
|
---|
472 |
|
---|
473 | #region Create
|
---|
474 | protected virtual ISingleObjectiveSolutionScope<TSolution> Create(CancellationToken token) {
|
---|
475 | var child = ToScope(null);
|
---|
476 | RunOperator(Problem.SolutionCreator, child, token);
|
---|
477 | return child;
|
---|
478 | }
|
---|
479 | #endregion
|
---|
480 |
|
---|
481 | #region Improve
|
---|
482 | protected virtual int HillClimb(ISingleObjectiveSolutionScope<TSolution> scope, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
483 | if (double.IsNaN(scope.Fitness)) {
|
---|
484 | Evaluate(scope, token);
|
---|
485 | Context.IncrementEvaluatedSolutions(1);
|
---|
486 | }
|
---|
487 | var before = scope.Fitness;
|
---|
488 | var lscontext = Context.CreateSingleSolutionContext(scope);
|
---|
489 | LocalSearchParameter.Value.Optimize(lscontext);
|
---|
490 | var after = scope.Fitness;
|
---|
491 | Context.HillclimbingStat.Add(Tuple.Create(before, after));
|
---|
492 | Context.IncrementEvaluatedSolutions(lscontext.EvaluatedSolutions);
|
---|
493 | return lscontext.Iterations;
|
---|
494 | }
|
---|
495 |
|
---|
496 | protected virtual void PerformTabuWalk(ISingleObjectiveSolutionScope<TSolution> scope, int steps, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
497 | if (double.IsNaN(scope.Fitness)) {
|
---|
498 | Evaluate(scope, token);
|
---|
499 | Context.IncrementEvaluatedSolutions(1);
|
---|
500 | }
|
---|
501 | var before = scope.Fitness;
|
---|
502 | var newScope = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
503 | TabuWalk(newScope, steps, token, subspace);
|
---|
504 | Context.TabuwalkingStat.Add(Tuple.Create(before, newScope.Fitness));
|
---|
505 | if (IsBetter(newScope, scope) || (newScope.Fitness == scope.Fitness && Dist(newScope, scope) > 0))
|
---|
506 | scope.Adopt(newScope);
|
---|
507 | }
|
---|
508 | protected abstract void TabuWalk(ISingleObjectiveSolutionScope<TSolution> scope, int steps, CancellationToken token, ISolutionSubspace<TSolution> subspace = null);
|
---|
509 | protected virtual void TabuClimb(ISingleObjectiveSolutionScope<TSolution> scope, int steps, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
510 | if (double.IsNaN(scope.Fitness)) {
|
---|
511 | Evaluate(scope, token);
|
---|
512 | Context.IncrementEvaluatedSolutions(1);
|
---|
513 | }
|
---|
514 | var before = scope.Fitness;
|
---|
515 | var newScope = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
516 | TabuWalk(newScope, steps, token, subspace);
|
---|
517 | Context.TabuwalkingStat.Add(Tuple.Create(before, newScope.Fitness));
|
---|
518 | if (IsBetter(newScope, scope) || (newScope.Fitness == scope.Fitness && Dist(newScope, scope) > 0))
|
---|
519 | scope.Adopt(newScope);
|
---|
520 | }
|
---|
521 | #endregion
|
---|
522 |
|
---|
523 | #region Breed
|
---|
524 | protected virtual ISingleObjectiveSolutionScope<TSolution> PerformBreeding(CancellationToken token) {
|
---|
525 | if (Context.PopulationCount < 2) throw new InvalidOperationException("Cannot breed from population with less than 2 individuals.");
|
---|
526 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
527 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
528 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
529 |
|
---|
530 | var p1 = Context.AtPopulation(i1);
|
---|
531 | var p2 = Context.AtPopulation(i2);
|
---|
532 |
|
---|
533 | if (double.IsNaN(p1.Fitness)) {
|
---|
534 | Evaluate(p1, token);
|
---|
535 | Context.IncrementEvaluatedSolutions(1);
|
---|
536 | }
|
---|
537 | if (double.IsNaN(p2.Fitness)) {
|
---|
538 | Evaluate(p2, token);
|
---|
539 | Context.IncrementEvaluatedSolutions(1);
|
---|
540 | }
|
---|
541 |
|
---|
542 | return BreedAndImprove(p1, p2, token);
|
---|
543 | }
|
---|
544 |
|
---|
545 | protected virtual ISingleObjectiveSolutionScope<TSolution> BreedAndImprove(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, CancellationToken token) {
|
---|
546 | var offspring = Cross(p1, p2, token);
|
---|
547 | var subspace = CalculateSubspace(new[] { p1.Solution, p2.Solution });
|
---|
548 | if (Context.Random.NextDouble() < MutationProbabilityMagicConst) {
|
---|
549 | Mutate(offspring, token, subspace); // mutate the solutions, especially to widen the sub-space
|
---|
550 | }
|
---|
551 | if (double.IsNaN(offspring.Fitness)) {
|
---|
552 | Evaluate(offspring, token);
|
---|
553 | Context.IncrementEvaluatedSolutions(1);
|
---|
554 | }
|
---|
555 | Context.BreedingStat.Add(Tuple.Create(p1.Fitness, p2.Fitness, offspring.Fitness));
|
---|
556 | if ((IsBetter(offspring, p1) && IsBetter(offspring, p2))
|
---|
557 | || Context.Population.Any(p => IsBetter(offspring, p))) return offspring;
|
---|
558 |
|
---|
559 | if (HillclimbingSuited(offspring))
|
---|
560 | HillClimb(offspring, token, subspace); // perform hillclimb in the solution sub-space
|
---|
561 | return offspring;
|
---|
562 | }
|
---|
563 |
|
---|
564 | protected abstract ISingleObjectiveSolutionScope<TSolution> Cross(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, CancellationToken token);
|
---|
565 | protected abstract void Mutate(ISingleObjectiveSolutionScope<TSolution> offspring, CancellationToken token, ISolutionSubspace<TSolution> subspace = null);
|
---|
566 | #endregion
|
---|
567 |
|
---|
568 | #region Relink
|
---|
569 | protected virtual ISingleObjectiveSolutionScope<TSolution> PerformRelinking(CancellationToken token) {
|
---|
570 | if (Context.PopulationCount < 2) throw new InvalidOperationException("Cannot breed from population with less than 2 individuals.");
|
---|
571 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
572 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
573 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
574 |
|
---|
575 | var p1 = Context.AtPopulation(i1);
|
---|
576 | var p2 = Context.AtPopulation(i2);
|
---|
577 |
|
---|
578 | return RelinkAndImprove(p1, p2, token);
|
---|
579 | }
|
---|
580 |
|
---|
581 | protected virtual ISingleObjectiveSolutionScope<TSolution> RelinkAndImprove(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token) {
|
---|
582 | var child = Relink(a, b, token);
|
---|
583 | if (IsBetter(child, a) && IsBetter(child, b)) return child;
|
---|
584 |
|
---|
585 | var dist1 = Dist(child, a);
|
---|
586 | var dist2 = Dist(child, b);
|
---|
587 | if (dist1 > 0 && dist2 > 0) {
|
---|
588 | var subspace = CalculateSubspace(new[] { a.Solution, b.Solution }, inverse: true);
|
---|
589 | if (HillclimbingSuited(child)) {
|
---|
590 | HillClimb(child, token, subspace);
|
---|
591 | }
|
---|
592 | }
|
---|
593 | return child;
|
---|
594 | }
|
---|
595 |
|
---|
596 | protected abstract ISingleObjectiveSolutionScope<TSolution> Relink(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token);
|
---|
597 | #endregion
|
---|
598 |
|
---|
599 | #region Sample
|
---|
600 | protected virtual ISingleObjectiveSolutionScope<TSolution> PerformSampling(CancellationToken token) {
|
---|
601 | SolutionModelTrainerParameter.Value.TrainModel(Context);
|
---|
602 | var sample = ToScope(Context.Model.Sample());
|
---|
603 | Evaluate(sample, token);
|
---|
604 | Context.IncrementEvaluatedSolutions(1);
|
---|
605 | if (Context.Population.Any(p => IsBetter(sample, p) || sample.Fitness == p.Fitness)) return sample;
|
---|
606 |
|
---|
607 | if (HillclimbingSuited(sample)) {
|
---|
608 | var subspace = CalculateSubspace(Context.Population.Select(x => x.Solution));
|
---|
609 | HillClimb(sample, token, subspace);
|
---|
610 | }
|
---|
611 | return sample;
|
---|
612 | }
|
---|
613 | #endregion
|
---|
614 |
|
---|
615 | protected bool HillclimbingSuited(ISingleObjectiveSolutionScope<TSolution> scope) {
|
---|
616 | return Context.Random.NextDouble() < ProbabilityAccept(scope, Context.HillclimbingStat);
|
---|
617 | }
|
---|
618 | protected bool HillclimbingSuited(double startingFitness) {
|
---|
619 | return Context.Random.NextDouble() < ProbabilityAccept(startingFitness, Context.HillclimbingStat);
|
---|
620 | }
|
---|
621 | protected bool TabuwalkingSuited(ISingleObjectiveSolutionScope<TSolution> scope) {
|
---|
622 | return Context.Random.NextDouble() < ProbabilityAccept(scope, Context.TabuwalkingStat);
|
---|
623 | }
|
---|
624 | protected bool TabuwalkingSuited(double startingFitness) {
|
---|
625 | return Context.Random.NextDouble() < ProbabilityAccept(startingFitness, Context.TabuwalkingStat);
|
---|
626 | }
|
---|
627 |
|
---|
628 | protected double ProbabilityAccept(ISingleObjectiveSolutionScope<TSolution> scope, IList<Tuple<double, double>> data) {
|
---|
629 | if (double.IsNaN(scope.Fitness)) {
|
---|
630 | Evaluate(scope, CancellationToken.None);
|
---|
631 | Context.IncrementEvaluatedSolutions(1);
|
---|
632 | }
|
---|
633 | return ProbabilityAccept(scope.Fitness, data);
|
---|
634 | }
|
---|
635 | protected double ProbabilityAccept(double startingFitness, IList<Tuple<double, double>> data) {
|
---|
636 | if (data.Count < 10) return 1.0;
|
---|
637 | int[] clusterValues;
|
---|
638 | var centroids = CkMeans1D.Cluster(data.Select(x => x.Item1).ToArray(), 2, out clusterValues);
|
---|
639 | var cluster = Math.Abs(startingFitness - centroids.First().Key) < Math.Abs(startingFitness - centroids.Last().Key) ? centroids.First().Value : centroids.Last().Value;
|
---|
640 |
|
---|
641 | var samples = 0;
|
---|
642 | double meanStart = 0, meanStartOld = 0, meanEnd = 0, meanEndOld = 0;
|
---|
643 | double varStart = 0, varStartOld = 0, varEnd = 0, varEndOld = 0;
|
---|
644 | for (var i = 0; i < data.Count; i++) {
|
---|
645 | if (clusterValues[i] != cluster) continue;
|
---|
646 |
|
---|
647 | samples++;
|
---|
648 | var x = data[i].Item1;
|
---|
649 | var y = data[i].Item2;
|
---|
650 |
|
---|
651 | if (samples == 1) {
|
---|
652 | meanStartOld = x;
|
---|
653 | meanEndOld = y;
|
---|
654 | } else {
|
---|
655 | meanStart = meanStartOld + (x - meanStartOld) / samples;
|
---|
656 | meanEnd = meanEndOld + (x - meanEndOld) / samples;
|
---|
657 | varStart = varStartOld + (x - meanStartOld) * (x - meanStart) / (samples - 1);
|
---|
658 | varEnd = varEndOld + (x - meanEndOld) * (x - meanEnd) / (samples - 1);
|
---|
659 |
|
---|
660 | meanStartOld = meanStart;
|
---|
661 | meanEndOld = meanEnd;
|
---|
662 | varStartOld = varStart;
|
---|
663 | varEndOld = varEnd;
|
---|
664 | }
|
---|
665 | }
|
---|
666 | if (samples < 5) return 1.0;
|
---|
667 | var cov = data.Select((v, i) => new { Index = i, Value = v }).Where(x => clusterValues[x.Index] == cluster).Select(x => x.Value).Sum(x => (x.Item1 - meanStart) * (x.Item2 - meanEnd)) / data.Count;
|
---|
668 |
|
---|
669 | var biasedMean = meanEnd + cov / varStart * (startingFitness - meanStart);
|
---|
670 | var biasedStdev = Math.Sqrt(varEnd - (cov * cov) / varStart);
|
---|
671 |
|
---|
672 | if (Problem.Maximization) {
|
---|
673 | var goal = Context.Population.Min(x => x.Fitness);
|
---|
674 | var z = (goal - biasedMean) / biasedStdev;
|
---|
675 | return 1.0 - Phi(z); // P(X >= z)
|
---|
676 | } else {
|
---|
677 | var goal = Context.Population.Max(x => x.Fitness);
|
---|
678 | var z = (goal - biasedMean) / biasedStdev;
|
---|
679 | return Phi(z); // P(X <= z)
|
---|
680 | }
|
---|
681 | }
|
---|
682 |
|
---|
683 | protected virtual bool Terminate() {
|
---|
684 | return MaximumEvaluations.HasValue && Context.EvaluatedSolutions >= MaximumEvaluations.Value
|
---|
685 | || MaximumExecutionTime.HasValue && ExecutionTime >= MaximumExecutionTime.Value
|
---|
686 | || TargetQuality.HasValue && (Problem.Maximization && Context.BestQuality >= TargetQuality.Value
|
---|
687 | || !Problem.Maximization && Context.BestQuality <= TargetQuality.Value);
|
---|
688 | }
|
---|
689 |
|
---|
690 | public event PropertyChangedEventHandler PropertyChanged;
|
---|
691 | protected void OnPropertyChanged(string property) {
|
---|
692 | var handler = PropertyChanged;
|
---|
693 | if (handler != null) handler(this, new PropertyChangedEventArgs(property));
|
---|
694 | }
|
---|
695 |
|
---|
696 | #region Engine Helper
|
---|
697 | protected void RunOperator(IOperator op, IScope scope, CancellationToken cancellationToken) {
|
---|
698 | var stack = new Stack<IOperation>();
|
---|
699 | stack.Push(Context.CreateChildOperation(op, scope));
|
---|
700 |
|
---|
701 | while (stack.Count > 0) {
|
---|
702 | cancellationToken.ThrowIfCancellationRequested();
|
---|
703 |
|
---|
704 | var next = stack.Pop();
|
---|
705 | if (next is OperationCollection) {
|
---|
706 | var coll = (OperationCollection)next;
|
---|
707 | for (int i = coll.Count - 1; i >= 0; i--)
|
---|
708 | if (coll[i] != null) stack.Push(coll[i]);
|
---|
709 | } else if (next is IAtomicOperation) {
|
---|
710 | var operation = (IAtomicOperation)next;
|
---|
711 | try {
|
---|
712 | next = operation.Operator.Execute((IExecutionContext)operation, cancellationToken);
|
---|
713 | } catch (Exception ex) {
|
---|
714 | stack.Push(operation);
|
---|
715 | if (ex is OperationCanceledException) throw ex;
|
---|
716 | else throw new OperatorExecutionException(operation.Operator, ex);
|
---|
717 | }
|
---|
718 | if (next != null) stack.Push(next);
|
---|
719 | }
|
---|
720 | }
|
---|
721 | }
|
---|
722 | #endregion
|
---|
723 |
|
---|
724 | #region Math Helper
|
---|
725 | // normal distribution CDF (left of x) for N(0;1) standard normal distribution
|
---|
726 | // from http://www.johndcook.com/blog/csharp_phi/
|
---|
727 | // license: "This code is in the public domain. Do whatever you want with it, no strings attached."
|
---|
728 | // added: 2016-11-19 21:46 CET
|
---|
729 | protected static double Phi(double x) {
|
---|
730 | // constants
|
---|
731 | double a1 = 0.254829592;
|
---|
732 | double a2 = -0.284496736;
|
---|
733 | double a3 = 1.421413741;
|
---|
734 | double a4 = -1.453152027;
|
---|
735 | double a5 = 1.061405429;
|
---|
736 | double p = 0.3275911;
|
---|
737 |
|
---|
738 | // Save the sign of x
|
---|
739 | int sign = 1;
|
---|
740 | if (x < 0)
|
---|
741 | sign = -1;
|
---|
742 | x = Math.Abs(x) / Math.Sqrt(2.0);
|
---|
743 |
|
---|
744 | // A&S formula 7.1.26
|
---|
745 | double t = 1.0 / (1.0 + p * x);
|
---|
746 | double y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * Math.Exp(-x * x);
|
---|
747 |
|
---|
748 | return 0.5 * (1.0 + sign * y);
|
---|
749 | }
|
---|
750 | #endregion
|
---|
751 | }
|
---|
752 | }
|
---|