[14420] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.ComponentModel;
|
---|
| 25 | using System.Linq;
|
---|
| 26 | using System.Threading;
|
---|
[14450] | 27 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
[14420] | 28 | using HeuristicLab.Analysis;
|
---|
| 29 | using HeuristicLab.Common;
|
---|
| 30 | using HeuristicLab.Core;
|
---|
| 31 | using HeuristicLab.Data;
|
---|
| 32 | using HeuristicLab.Optimization;
|
---|
| 33 | using HeuristicLab.Parameters;
|
---|
| 34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[14544] | 35 | using HeuristicLab.Random;
|
---|
[14420] | 36 |
|
---|
| 37 | namespace HeuristicLab.Algorithms.MemPR {
|
---|
| 38 | [Item("MemPR Algorithm", "Base class for MemPR algorithms")]
|
---|
| 39 | [StorableClass]
|
---|
[14450] | 40 | public abstract class MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> : BasicAlgorithm, INotifyPropertyChanged
|
---|
[14552] | 41 | where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem
|
---|
[14420] | 42 | where TSolution : class, IItem
|
---|
[14450] | 43 | where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>, new()
|
---|
| 44 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
|
---|
[14420] | 45 |
|
---|
| 46 | public override Type ProblemType {
|
---|
[14450] | 47 | get { return typeof(TProblem); }
|
---|
[14420] | 48 | }
|
---|
| 49 |
|
---|
[14450] | 50 | public new TProblem Problem {
|
---|
| 51 | get { return (TProblem)base.Problem; }
|
---|
[14420] | 52 | set { base.Problem = value; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
[14562] | 55 | public override bool SupportsPause {
|
---|
| 56 | get { return true; }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[14420] | 59 | protected string QualityName {
|
---|
| 60 | get { return Problem != null && Problem.Evaluator != null ? Problem.Evaluator.QualityParameter.ActualName : null; }
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public int? MaximumEvaluations {
|
---|
| 64 | get {
|
---|
| 65 | var val = ((OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"]).Value;
|
---|
| 66 | return val != null ? val.Value : (int?)null;
|
---|
| 67 | }
|
---|
| 68 | set {
|
---|
| 69 | var param = (OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"];
|
---|
| 70 | param.Value = value.HasValue ? new IntValue(value.Value) : null;
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public TimeSpan? MaximumExecutionTime {
|
---|
| 75 | get {
|
---|
| 76 | var val = ((OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"]).Value;
|
---|
| 77 | return val != null ? val.Value : (TimeSpan?)null;
|
---|
| 78 | }
|
---|
| 79 | set {
|
---|
| 80 | var param = (OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"];
|
---|
| 81 | param.Value = value.HasValue ? new TimeSpanValue(value.Value) : null;
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | public double? TargetQuality {
|
---|
| 86 | get {
|
---|
| 87 | var val = ((OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"]).Value;
|
---|
| 88 | return val != null ? val.Value : (double?)null;
|
---|
| 89 | }
|
---|
| 90 | set {
|
---|
| 91 | var param = (OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"];
|
---|
| 92 | param.Value = value.HasValue ? new DoubleValue(value.Value) : null;
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | protected FixedValueParameter<IntValue> MaximumPopulationSizeParameter {
|
---|
| 97 | get { return ((FixedValueParameter<IntValue>)Parameters["MaximumPopulationSize"]); }
|
---|
| 98 | }
|
---|
| 99 | public int MaximumPopulationSize {
|
---|
| 100 | get { return MaximumPopulationSizeParameter.Value.Value; }
|
---|
| 101 | set { MaximumPopulationSizeParameter.Value.Value = value; }
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | public bool SetSeedRandomly {
|
---|
| 105 | get { return ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value; }
|
---|
| 106 | set { ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value = value; }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public int Seed {
|
---|
| 110 | get { return ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value; }
|
---|
| 111 | set { ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value = value; }
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | public IAnalyzer Analyzer {
|
---|
| 115 | get { return ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value; }
|
---|
| 116 | set { ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value = value; }
|
---|
| 117 | }
|
---|
| 118 |
|
---|
[14450] | 119 | public IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>> SolutionModelTrainerParameter {
|
---|
| 120 | get { return (IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>)Parameters["SolutionModelTrainer"]; }
|
---|
[14420] | 121 | }
|
---|
| 122 |
|
---|
[14450] | 123 | public IConstrainedValueParameter<ILocalSearch<TSolutionContext>> LocalSearchParameter {
|
---|
| 124 | get { return (IConstrainedValueParameter<ILocalSearch<TSolutionContext>>)Parameters["LocalSearch"]; }
|
---|
[14420] | 125 | }
|
---|
| 126 |
|
---|
| 127 | [Storable]
|
---|
[14450] | 128 | private TPopulationContext context;
|
---|
| 129 | public TPopulationContext Context {
|
---|
[14420] | 130 | get { return context; }
|
---|
| 131 | protected set {
|
---|
| 132 | if (context == value) return;
|
---|
| 133 | context = value;
|
---|
| 134 | OnPropertyChanged("State");
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | [Storable]
|
---|
| 139 | private BestAverageWorstQualityAnalyzer qualityAnalyzer;
|
---|
[14563] | 140 | [Storable]
|
---|
| 141 | private QualityPerClockAnalyzer qualityPerClockAnalyzer;
|
---|
| 142 | [Storable]
|
---|
| 143 | private QualityPerEvaluationsAnalyzer qualityPerEvaluationsAnalyzer;
|
---|
[14420] | 144 |
|
---|
| 145 | [StorableConstructor]
|
---|
| 146 | protected MemPRAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
[14450] | 147 | protected MemPRAlgorithm(MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner) : base(original, cloner) {
|
---|
[14420] | 148 | context = cloner.Clone(original.context);
|
---|
| 149 | qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
|
---|
[14563] | 150 | qualityPerClockAnalyzer = cloner.Clone(original.qualityPerClockAnalyzer);
|
---|
| 151 | qualityPerEvaluationsAnalyzer = cloner.Clone(original.qualityPerEvaluationsAnalyzer);
|
---|
| 152 |
|
---|
[14420] | 153 | RegisterEventHandlers();
|
---|
| 154 | }
|
---|
| 155 | protected MemPRAlgorithm() {
|
---|
| 156 | Parameters.Add(new ValueParameter<IAnalyzer>("Analyzer", "The analyzer to apply to the population.", new MultiAnalyzer()));
|
---|
| 157 | Parameters.Add(new FixedValueParameter<IntValue>("MaximumPopulationSize", "The maximum size of the population that is evolved.", new IntValue(20)));
|
---|
| 158 | Parameters.Add(new OptionalValueParameter<IntValue>("MaximumEvaluations", "The maximum number of solution evaluations."));
|
---|
[14563] | 159 | Parameters.Add(new OptionalValueParameter<TimeSpanValue>("MaximumExecutionTime", "The maximum runtime.", new TimeSpanValue(TimeSpan.FromMinutes(10))));
|
---|
[14420] | 160 | Parameters.Add(new OptionalValueParameter<DoubleValue>("TargetQuality", "The target quality at which the algorithm terminates."));
|
---|
| 161 | Parameters.Add(new FixedValueParameter<BoolValue>("SetSeedRandomly", "Whether each run of the algorithm should be conducted with a new random seed.", new BoolValue(true)));
|
---|
| 162 | Parameters.Add(new FixedValueParameter<IntValue>("Seed", "The random number seed that is used in case SetSeedRandomly is false.", new IntValue(0)));
|
---|
[14450] | 163 | Parameters.Add(new ConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>("SolutionModelTrainer", "The object that creates a solution model that can be sampled."));
|
---|
| 164 | Parameters.Add(new ConstrainedValueParameter<ILocalSearch<TSolutionContext>>("LocalSearch", "The local search operator to use."));
|
---|
[14420] | 165 |
|
---|
| 166 | qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
|
---|
[14563] | 167 | qualityPerClockAnalyzer = new QualityPerClockAnalyzer();
|
---|
| 168 | qualityPerEvaluationsAnalyzer = new QualityPerEvaluationsAnalyzer();
|
---|
| 169 |
|
---|
[14420] | 170 | RegisterEventHandlers();
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 174 | private void AfterDeserialization() {
|
---|
| 175 | RegisterEventHandlers();
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | private void RegisterEventHandlers() {
|
---|
| 179 | MaximumPopulationSizeParameter.Value.ValueChanged += MaximumPopulationSizeOnChanged;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | private void MaximumPopulationSizeOnChanged(object sender, EventArgs eventArgs) {
|
---|
| 183 | if (ExecutionState == ExecutionState.Started || ExecutionState == ExecutionState.Paused)
|
---|
| 184 | throw new InvalidOperationException("Cannot change maximum population size before algorithm finishes.");
|
---|
| 185 | Prepare();
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | protected override void OnProblemChanged() {
|
---|
| 189 | base.OnProblemChanged();
|
---|
| 190 | qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
| 191 | qualityAnalyzer.MaximizationParameter.Hidden = true;
|
---|
| 192 | qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
| 193 | qualityAnalyzer.QualityParameter.Depth = 1;
|
---|
| 194 | qualityAnalyzer.QualityParameter.Hidden = true;
|
---|
| 195 | qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
|
---|
| 196 | qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
|
---|
| 197 |
|
---|
| 198 | var multiAnalyzer = Analyzer as MultiAnalyzer;
|
---|
| 199 | if (multiAnalyzer != null) {
|
---|
| 200 | multiAnalyzer.Operators.Clear();
|
---|
| 201 | if (Problem != null) {
|
---|
| 202 | foreach (var analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
| 203 | foreach (var param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
| 204 | param.Depth = 1;
|
---|
[14563] | 205 | multiAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault || analyzer is ISimilarityBasedOperator);
|
---|
[14420] | 206 | }
|
---|
| 207 | }
|
---|
| 208 | multiAnalyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
|
---|
[14563] | 209 | multiAnalyzer.Operators.Add(qualityPerClockAnalyzer, true);
|
---|
| 210 | multiAnalyzer.Operators.Add(qualityPerEvaluationsAnalyzer, true);
|
---|
[14420] | 211 | }
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | public override void Prepare() {
|
---|
| 215 | base.Prepare();
|
---|
| 216 | Results.Clear();
|
---|
| 217 | Context = null;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
[14450] | 220 | protected virtual TPopulationContext CreateContext() {
|
---|
| 221 | return new TPopulationContext();
|
---|
[14420] | 222 | }
|
---|
| 223 |
|
---|
| 224 | protected sealed override void Run(CancellationToken token) {
|
---|
| 225 | if (Context == null) {
|
---|
| 226 | Context = CreateContext();
|
---|
| 227 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
| 228 | Context.Random.Reset(Seed);
|
---|
| 229 | Context.Scope.Variables.Add(new Variable("Results", Results));
|
---|
[14450] | 230 | Context.Problem = Problem;
|
---|
[14420] | 231 | }
|
---|
| 232 |
|
---|
[14477] | 233 | if (MaximumExecutionTime.HasValue)
|
---|
| 234 | CancellationTokenSource.CancelAfter(MaximumExecutionTime.Value);
|
---|
| 235 |
|
---|
[14420] | 236 | IExecutionContext context = null;
|
---|
| 237 | foreach (var item in Problem.ExecutionContextItems)
|
---|
| 238 | context = new Core.ExecutionContext(context, item, Context.Scope);
|
---|
| 239 | context = new Core.ExecutionContext(context, this, Context.Scope);
|
---|
| 240 | Context.Parent = context;
|
---|
| 241 |
|
---|
| 242 | if (!Context.Initialized) {
|
---|
| 243 | // We initialize the population with two local optima
|
---|
| 244 | while (Context.PopulationCount < 2) {
|
---|
| 245 | var child = Create(token);
|
---|
[14496] | 246 | Context.LocalSearchEvaluations += HillClimb(child, token);
|
---|
[14550] | 247 | Context.LocalOptimaLevel += child.Fitness;
|
---|
[14544] | 248 | Context.AddToPopulation(child);
|
---|
| 249 | Context.BestQuality = child.Fitness;
|
---|
[14680] | 250 | Analyze(CancellationToken.None);
|
---|
[14420] | 251 | token.ThrowIfCancellationRequested();
|
---|
[14456] | 252 | if (Terminate()) return;
|
---|
[14420] | 253 | }
|
---|
[14496] | 254 | Context.LocalSearchEvaluations /= 2;
|
---|
[14550] | 255 | Context.LocalOptimaLevel /= 2;
|
---|
[14420] | 256 | Context.Initialized = true;
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | while (!Terminate()) {
|
---|
| 260 | Iterate(token);
|
---|
| 261 | Analyze(token);
|
---|
| 262 | token.ThrowIfCancellationRequested();
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 |
|
---|
| 266 | private void Iterate(CancellationToken token) {
|
---|
| 267 | var replaced = false;
|
---|
| 268 | ISingleObjectiveSolutionScope<TSolution> offspring = null;
|
---|
[14544] | 269 |
|
---|
| 270 | offspring = Breed(token);
|
---|
| 271 | if (offspring != null) {
|
---|
| 272 | var replNew = Replace(offspring, token);
|
---|
| 273 | if (replNew) {
|
---|
[14420] | 274 | replaced = true;
|
---|
| 275 | Context.ByBreeding++;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 |
|
---|
[14544] | 279 | offspring = Relink(token);
|
---|
| 280 | if (offspring != null) {
|
---|
| 281 | if (Replace(offspring, token)) {
|
---|
[14420] | 282 | replaced = true;
|
---|
| 283 | Context.ByRelinking++;
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 |
|
---|
[14544] | 287 | offspring = Delink(token);
|
---|
| 288 | if (offspring != null) {
|
---|
| 289 | if (Replace(offspring, token)) {
|
---|
| 290 | replaced = true;
|
---|
| 291 | Context.ByDelinking++;
|
---|
| 292 | }
|
---|
[14420] | 293 | }
|
---|
| 294 |
|
---|
[14544] | 295 | offspring = Sample(token);
|
---|
| 296 | if (offspring != null) {
|
---|
| 297 | if (Replace(offspring, token)) {
|
---|
| 298 | replaced = true;
|
---|
| 299 | Context.BySampling++;
|
---|
| 300 | }
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | if (!replaced && offspring != null) {
|
---|
[14573] | 304 | if (Context.HillclimbingSuited(offspring.Fitness)) {
|
---|
[14557] | 305 | HillClimb(offspring, token, CalculateSubspace(Context.Population.Select(x => x.Solution)));
|
---|
[14544] | 306 | if (Replace(offspring, token)) {
|
---|
[14420] | 307 | Context.ByHillclimbing++;
|
---|
| 308 | replaced = true;
|
---|
| 309 | }
|
---|
| 310 | }
|
---|
| 311 | }
|
---|
[14544] | 312 |
|
---|
| 313 | if (!replaced) {
|
---|
[14563] | 314 | var before = Context.Population.SampleRandom(Context.Random);
|
---|
| 315 | offspring = (ISingleObjectiveSolutionScope<TSolution>)before.Clone();
|
---|
[14544] | 316 | AdaptiveWalk(offspring, Context.LocalSearchEvaluations * 2, token);
|
---|
[14563] | 317 | if (!Eq(before, offspring))
|
---|
| 318 | Context.AddAdaptivewalkingResult(before, offspring);
|
---|
[14544] | 319 | if (Replace(offspring, token)) {
|
---|
| 320 | Context.ByAdaptivewalking++;
|
---|
| 321 | replaced = true;
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
| 324 |
|
---|
[14420] | 325 | Context.Iterations++;
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 | protected void Analyze(CancellationToken token) {
|
---|
| 329 | IResult res;
|
---|
| 330 | if (!Results.TryGetValue("EvaluatedSolutions", out res))
|
---|
| 331 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
| 332 | else ((IntValue)res.Value).Value = Context.EvaluatedSolutions;
|
---|
| 333 | if (!Results.TryGetValue("Iterations", out res))
|
---|
| 334 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
| 335 | else ((IntValue)res.Value).Value = Context.Iterations;
|
---|
[14496] | 336 | if (!Results.TryGetValue("LocalSearch Evaluations", out res))
|
---|
| 337 | Results.Add(new Result("LocalSearch Evaluations", new IntValue(Context.LocalSearchEvaluations)));
|
---|
| 338 | else ((IntValue)res.Value).Value = Context.LocalSearchEvaluations;
|
---|
[14420] | 339 | if (!Results.TryGetValue("ByBreeding", out res))
|
---|
| 340 | Results.Add(new Result("ByBreeding", new IntValue(Context.ByBreeding)));
|
---|
| 341 | else ((IntValue)res.Value).Value = Context.ByBreeding;
|
---|
| 342 | if (!Results.TryGetValue("ByRelinking", out res))
|
---|
| 343 | Results.Add(new Result("ByRelinking", new IntValue(Context.ByRelinking)));
|
---|
| 344 | else ((IntValue)res.Value).Value = Context.ByRelinking;
|
---|
[14544] | 345 | if (!Results.TryGetValue("ByDelinking", out res))
|
---|
| 346 | Results.Add(new Result("ByDelinking", new IntValue(Context.ByDelinking)));
|
---|
| 347 | else ((IntValue)res.Value).Value = Context.ByDelinking;
|
---|
[14420] | 348 | if (!Results.TryGetValue("BySampling", out res))
|
---|
| 349 | Results.Add(new Result("BySampling", new IntValue(Context.BySampling)));
|
---|
| 350 | else ((IntValue)res.Value).Value = Context.BySampling;
|
---|
| 351 | if (!Results.TryGetValue("ByHillclimbing", out res))
|
---|
| 352 | Results.Add(new Result("ByHillclimbing", new IntValue(Context.ByHillclimbing)));
|
---|
| 353 | else ((IntValue)res.Value).Value = Context.ByHillclimbing;
|
---|
[14544] | 354 | if (!Results.TryGetValue("ByAdaptivewalking", out res))
|
---|
| 355 | Results.Add(new Result("ByAdaptivewalking", new IntValue(Context.ByAdaptivewalking)));
|
---|
| 356 | else ((IntValue)res.Value).Value = Context.ByAdaptivewalking;
|
---|
[14420] | 357 |
|
---|
[14544] | 358 | var sp = new ScatterPlot("Breeding Correlation", "");
|
---|
[14563] | 359 | sp.Rows.Add(new ScatterPlotDataRow("Parent1 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 }});
|
---|
| 360 | sp.Rows.Add(new ScatterPlotDataRow("Parent2 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
| 361 | sp.Rows.Add(new ScatterPlotDataRow("Parent Distance vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
[14544] | 362 | if (!Results.TryGetValue("BreedingStat", out res)) {
|
---|
| 363 | Results.Add(new Result("BreedingStat", sp));
|
---|
[14420] | 364 | } else res.Value = sp;
|
---|
| 365 |
|
---|
[14544] | 366 | sp = new ScatterPlot("Relinking Correlation", "");
|
---|
[14563] | 367 | sp.Rows.Add(new ScatterPlotDataRow("A vs Relink", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
| 368 | sp.Rows.Add(new ScatterPlotDataRow("B vs Relink", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
| 369 | sp.Rows.Add(new ScatterPlotDataRow("d(A,B) vs Offspring", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
[14544] | 370 | if (!Results.TryGetValue("RelinkingStat", out res)) {
|
---|
| 371 | Results.Add(new Result("RelinkingStat", sp));
|
---|
[14420] | 372 | } else res.Value = sp;
|
---|
| 373 |
|
---|
[14544] | 374 | sp = new ScatterPlot("Delinking Correlation", "");
|
---|
[14563] | 375 | sp.Rows.Add(new ScatterPlotDataRow("A vs Delink", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
| 376 | sp.Rows.Add(new ScatterPlotDataRow("B vs Delink", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
| 377 | sp.Rows.Add(new ScatterPlotDataRow("d(A,B) vs Offspring", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
[14544] | 378 | if (!Results.TryGetValue("DelinkingStat", out res)) {
|
---|
| 379 | Results.Add(new Result("DelinkingStat", sp));
|
---|
| 380 | } else res.Value = sp;
|
---|
| 381 |
|
---|
| 382 | sp = new ScatterPlot("Sampling Correlation", "");
|
---|
| 383 | sp.Rows.Add(new ScatterPlotDataRow("AvgFitness vs Sample", "", Context.SamplingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
| 384 | if (!Results.TryGetValue("SampleStat", out res)) {
|
---|
| 385 | Results.Add(new Result("SampleStat", sp));
|
---|
| 386 | } else res.Value = sp;
|
---|
| 387 |
|
---|
| 388 | sp = new ScatterPlot("Hillclimbing Correlation", "");
|
---|
[14563] | 389 | sp.Rows.Add(new ScatterPlotDataRow("Start vs Improvement", "", Context.HillclimbingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
[14420] | 390 | if (!Results.TryGetValue("HillclimbingStat", out res)) {
|
---|
| 391 | Results.Add(new Result("HillclimbingStat", sp));
|
---|
| 392 | } else res.Value = sp;
|
---|
| 393 |
|
---|
[14544] | 394 | sp = new ScatterPlot("Adaptivewalking Correlation", "");
|
---|
| 395 | sp.Rows.Add(new ScatterPlotDataRow("Start vs Best", "", Context.AdaptivewalkingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
| 396 | if (!Results.TryGetValue("AdaptivewalkingStat", out res)) {
|
---|
| 397 | Results.Add(new Result("AdaptivewalkingStat", sp));
|
---|
[14420] | 398 | } else res.Value = sp;
|
---|
| 399 |
|
---|
[14544] | 400 | if (Context.BreedingPerformanceModel != null) {
|
---|
| 401 | var sol = Context.GetSolution(Context.BreedingPerformanceModel, Context.BreedingStat);
|
---|
| 402 | if (!Results.TryGetValue("Breeding Performance", out res)) {
|
---|
| 403 | Results.Add(new Result("Breeding Performance", sol));
|
---|
| 404 | } else res.Value = sol;
|
---|
| 405 | }
|
---|
| 406 | if (Context.RelinkingPerformanceModel != null) {
|
---|
| 407 | var sol = Context.GetSolution(Context.RelinkingPerformanceModel, Context.RelinkingStat);
|
---|
| 408 | if (!Results.TryGetValue("Relinking Performance", out res)) {
|
---|
| 409 | Results.Add(new Result("Relinking Performance", sol));
|
---|
| 410 | } else res.Value = sol;
|
---|
| 411 | }
|
---|
| 412 | if (Context.DelinkingPerformanceModel != null) {
|
---|
| 413 | var sol = Context.GetSolution(Context.DelinkingPerformanceModel, Context.DelinkingStat);
|
---|
| 414 | if (!Results.TryGetValue("Delinking Performance", out res)) {
|
---|
| 415 | Results.Add(new Result("Delinking Performance", sol));
|
---|
| 416 | } else res.Value = sol;
|
---|
| 417 | }
|
---|
| 418 | if (Context.SamplingPerformanceModel != null) {
|
---|
| 419 | var sol = Context.GetSolution(Context.SamplingPerformanceModel, Context.SamplingStat);
|
---|
| 420 | if (!Results.TryGetValue("Sampling Performance", out res)) {
|
---|
| 421 | Results.Add(new Result("Sampling Performance", sol));
|
---|
| 422 | } else res.Value = sol;
|
---|
| 423 | }
|
---|
| 424 | if (Context.HillclimbingPerformanceModel != null) {
|
---|
| 425 | var sol = Context.GetSolution(Context.HillclimbingPerformanceModel, Context.HillclimbingStat);
|
---|
| 426 | if (!Results.TryGetValue("Hillclimbing Performance", out res)) {
|
---|
| 427 | Results.Add(new Result("Hillclimbing Performance", sol));
|
---|
| 428 | } else res.Value = sol;
|
---|
| 429 | }
|
---|
| 430 | if (Context.AdaptiveWalkPerformanceModel != null) {
|
---|
| 431 | var sol = Context.GetSolution(Context.AdaptiveWalkPerformanceModel, Context.AdaptivewalkingStat);
|
---|
| 432 | if (!Results.TryGetValue("Adaptivewalk Performance", out res)) {
|
---|
| 433 | Results.Add(new Result("Adaptivewalk Performance", sol));
|
---|
| 434 | } else res.Value = sol;
|
---|
| 435 | }
|
---|
| 436 |
|
---|
[14552] | 437 | Context.RunOperator(Analyzer, Context.Scope, token);
|
---|
[14420] | 438 | }
|
---|
| 439 |
|
---|
[14544] | 440 | protected bool Replace(ISingleObjectiveSolutionScope<TSolution> child, CancellationToken token) {
|
---|
[14453] | 441 | if (double.IsNaN(child.Fitness)) {
|
---|
[14552] | 442 | Context.Evaluate(child, token);
|
---|
[14453] | 443 | Context.IncrementEvaluatedSolutions(1);
|
---|
| 444 | }
|
---|
[14544] | 445 | if (Context.IsBetter(child.Fitness, Context.BestQuality)) {
|
---|
[14453] | 446 | Context.BestQuality = child.Fitness;
|
---|
| 447 | Context.BestSolution = (TSolution)child.Solution.Clone();
|
---|
| 448 | }
|
---|
[14420] | 449 |
|
---|
| 450 | var popSize = MaximumPopulationSize;
|
---|
| 451 | if (Context.Population.All(p => !Eq(p, child))) {
|
---|
| 452 |
|
---|
| 453 | if (Context.PopulationCount < popSize) {
|
---|
| 454 | Context.AddToPopulation(child);
|
---|
[14544] | 455 | return true;// Context.PopulationCount - 1;
|
---|
[14420] | 456 | }
|
---|
| 457 |
|
---|
| 458 | // The set of replacement candidates consists of all solutions at least as good as the new one
|
---|
| 459 | var candidates = Context.Population.Select((p, i) => new { Index = i, Individual = p })
|
---|
| 460 | .Where(x => x.Individual.Fitness == child.Fitness
|
---|
[14544] | 461 | || Context.IsBetter(child, x.Individual)).ToList();
|
---|
| 462 | if (candidates.Count == 0) return false;// -1;
|
---|
[14420] | 463 |
|
---|
| 464 | var repCand = -1;
|
---|
| 465 | var avgChildDist = 0.0;
|
---|
| 466 | var minChildDist = double.MaxValue;
|
---|
| 467 | var plateau = new List<int>();
|
---|
| 468 | var worstPlateau = -1;
|
---|
| 469 | var minAvgPlateauDist = double.MaxValue;
|
---|
| 470 | var minPlateauDist = double.MaxValue;
|
---|
| 471 | // If there are equally good solutions it is first tried to replace one of those
|
---|
| 472 | // The criteria for replacement is that the new solution has better average distance
|
---|
| 473 | // to all other solutions at this "plateau"
|
---|
| 474 | foreach (var c in candidates.Where(x => x.Individual.Fitness == child.Fitness)) {
|
---|
| 475 | var dist = Dist(c.Individual, child);
|
---|
| 476 | avgChildDist += dist;
|
---|
| 477 | if (dist < minChildDist) minChildDist = dist;
|
---|
| 478 | plateau.Add(c.Index);
|
---|
| 479 | }
|
---|
| 480 | if (plateau.Count > 2) {
|
---|
| 481 | avgChildDist /= plateau.Count;
|
---|
| 482 | foreach (var p in plateau) {
|
---|
| 483 | var avgDist = 0.0;
|
---|
| 484 | var minDist = double.MaxValue;
|
---|
| 485 | foreach (var q in plateau) {
|
---|
| 486 | if (p == q) continue;
|
---|
| 487 | var dist = Dist(Context.AtPopulation(p), Context.AtPopulation(q));
|
---|
| 488 | avgDist += dist;
|
---|
| 489 | if (dist < minDist) minDist = dist;
|
---|
| 490 | }
|
---|
| 491 |
|
---|
| 492 | var d = Dist(Context.AtPopulation(p), child);
|
---|
| 493 | avgDist += d;
|
---|
| 494 | avgDist /= plateau.Count;
|
---|
| 495 | if (d < minDist) minDist = d;
|
---|
| 496 |
|
---|
| 497 | if (minDist < minPlateauDist || (minDist == minPlateauDist && avgDist < avgChildDist)) {
|
---|
| 498 | minAvgPlateauDist = avgDist;
|
---|
| 499 | minPlateauDist = minDist;
|
---|
| 500 | worstPlateau = p;
|
---|
| 501 | }
|
---|
| 502 | }
|
---|
| 503 | if (minPlateauDist < minChildDist || (minPlateauDist == minChildDist && minAvgPlateauDist < avgChildDist))
|
---|
| 504 | repCand = worstPlateau;
|
---|
| 505 | }
|
---|
| 506 |
|
---|
| 507 | if (repCand < 0) {
|
---|
| 508 | // If no solution at the same plateau were identified for replacement
|
---|
| 509 | // a worse solution with smallest distance is chosen
|
---|
| 510 | var minDist = double.MaxValue;
|
---|
[14544] | 511 | foreach (var c in candidates.Where(x => Context.IsBetter(child, x.Individual))) {
|
---|
[14420] | 512 | var d = Dist(c.Individual, child);
|
---|
| 513 | if (d < minDist) {
|
---|
| 514 | minDist = d;
|
---|
| 515 | repCand = c.Index;
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 | // If no replacement was identified, this can only mean that there are
|
---|
| 521 | // no worse solutions and those on the same plateau are all better
|
---|
| 522 | // stretched out than the new one
|
---|
[14544] | 523 | if (repCand < 0) return false;// -1;
|
---|
[14420] | 524 |
|
---|
| 525 | Context.ReplaceAtPopulation(repCand, child);
|
---|
[14544] | 526 | return true;// repCand;
|
---|
[14420] | 527 | }
|
---|
[14544] | 528 | return false;// -1;
|
---|
[14420] | 529 | }
|
---|
[14550] | 530 |
|
---|
| 531 | protected bool Eq(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b) {
|
---|
| 532 | return Eq(a.Solution, b.Solution);
|
---|
| 533 | }
|
---|
| 534 | protected abstract bool Eq(TSolution a, TSolution b);
|
---|
[14420] | 535 | protected abstract double Dist(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b);
|
---|
[14450] | 536 | protected abstract ISolutionSubspace<TSolution> CalculateSubspace(IEnumerable<TSolution> solutions, bool inverse = false);
|
---|
[14420] | 537 |
|
---|
| 538 | #region Create
|
---|
[14450] | 539 | protected virtual ISingleObjectiveSolutionScope<TSolution> Create(CancellationToken token) {
|
---|
[14552] | 540 | var child = Context.ToScope(null);
|
---|
| 541 | Context.RunOperator(Problem.SolutionCreator, child, token);
|
---|
[14450] | 542 | return child;
|
---|
| 543 | }
|
---|
[14420] | 544 | #endregion
|
---|
| 545 |
|
---|
| 546 | #region Improve
|
---|
[14450] | 547 | protected virtual int HillClimb(ISingleObjectiveSolutionScope<TSolution> scope, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
[14453] | 548 | if (double.IsNaN(scope.Fitness)) {
|
---|
[14552] | 549 | Context.Evaluate(scope, token);
|
---|
[14453] | 550 | Context.IncrementEvaluatedSolutions(1);
|
---|
| 551 | }
|
---|
[14563] | 552 | var before = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
[14420] | 553 | var lscontext = Context.CreateSingleSolutionContext(scope);
|
---|
| 554 | LocalSearchParameter.Value.Optimize(lscontext);
|
---|
[14563] | 555 | Context.AddHillclimbingResult(before, scope);
|
---|
[14453] | 556 | Context.IncrementEvaluatedSolutions(lscontext.EvaluatedSolutions);
|
---|
[14456] | 557 | return lscontext.EvaluatedSolutions;
|
---|
[14420] | 558 | }
|
---|
| 559 |
|
---|
[14544] | 560 | protected virtual void AdaptiveClimb(ISingleObjectiveSolutionScope<TSolution> scope, int maxEvals, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
[14453] | 561 | if (double.IsNaN(scope.Fitness)) {
|
---|
[14552] | 562 | Context.Evaluate(scope, token);
|
---|
[14453] | 563 | Context.IncrementEvaluatedSolutions(1);
|
---|
| 564 | }
|
---|
[14420] | 565 | var newScope = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
[14544] | 566 | AdaptiveWalk(newScope, maxEvals, token, subspace);
|
---|
[14563] | 567 |
|
---|
[14573] | 568 | Context.AddAdaptivewalkingResult(scope, newScope);
|
---|
[14563] | 569 | if (Context.IsBetter(newScope, scope)) {
|
---|
[14420] | 570 | scope.Adopt(newScope);
|
---|
[14573] | 571 | }
|
---|
[14420] | 572 | }
|
---|
[14544] | 573 | protected abstract void AdaptiveWalk(ISingleObjectiveSolutionScope<TSolution> scope, int maxEvals, CancellationToken token, ISolutionSubspace<TSolution> subspace = null);
|
---|
| 574 |
|
---|
[14420] | 575 | #endregion
|
---|
[14544] | 576 |
|
---|
[14420] | 577 | #region Breed
|
---|
[14544] | 578 | protected virtual ISingleObjectiveSolutionScope<TSolution> Breed(CancellationToken token) {
|
---|
[14420] | 579 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
| 580 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
| 581 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
| 582 |
|
---|
| 583 | var p1 = Context.AtPopulation(i1);
|
---|
| 584 | var p2 = Context.AtPopulation(i2);
|
---|
| 585 |
|
---|
[14453] | 586 | if (double.IsNaN(p1.Fitness)) {
|
---|
[14552] | 587 | Context.Evaluate(p1, token);
|
---|
[14453] | 588 | Context.IncrementEvaluatedSolutions(1);
|
---|
| 589 | }
|
---|
| 590 | if (double.IsNaN(p2.Fitness)) {
|
---|
[14552] | 591 | Context.Evaluate(p2, token);
|
---|
[14453] | 592 | Context.IncrementEvaluatedSolutions(1);
|
---|
| 593 | }
|
---|
[14420] | 594 |
|
---|
[14563] | 595 | if (!Context.BreedingSuited(p1, p2, Dist(p1, p2))) return null;
|
---|
[14420] | 596 |
|
---|
[14563] | 597 | var offspring = Breed(p1, p2, token);
|
---|
[14544] | 598 |
|
---|
[14563] | 599 | if (double.IsNaN(offspring.Fitness)) {
|
---|
| 600 | Context.Evaluate(offspring, token);
|
---|
| 601 | Context.IncrementEvaluatedSolutions(1);
|
---|
| 602 | }
|
---|
[14544] | 603 |
|
---|
[14563] | 604 | Context.AddBreedingResult(p1, p2, Dist(p1, p2), offspring);
|
---|
| 605 |
|
---|
| 606 | // new best solutions are improved using hill climbing in full solution space
|
---|
| 607 | if (Context.Population.All(p => Context.IsBetter(offspring, p)))
|
---|
| 608 | HillClimb(offspring, token);
|
---|
| 609 | else if (!Eq(offspring, p1) && !Eq(offspring, p2) && Context.HillclimbingSuited(offspring.Fitness))
|
---|
| 610 | HillClimb(offspring, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }, inverse: false));
|
---|
| 611 |
|
---|
| 612 | return offspring;
|
---|
[14420] | 613 | }
|
---|
| 614 |
|
---|
[14544] | 615 | protected abstract ISingleObjectiveSolutionScope<TSolution> Breed(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, CancellationToken token);
|
---|
[14420] | 616 | #endregion
|
---|
| 617 |
|
---|
[14544] | 618 | #region Relink/Delink
|
---|
| 619 | protected virtual ISingleObjectiveSolutionScope<TSolution> Relink(CancellationToken token) {
|
---|
[14420] | 620 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
| 621 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
| 622 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
| 623 |
|
---|
| 624 | var p1 = Context.AtPopulation(i1);
|
---|
| 625 | var p2 = Context.AtPopulation(i2);
|
---|
| 626 |
|
---|
[14563] | 627 | if (!Context.RelinkSuited(p1, p2, Dist(p1, p2))) return null;
|
---|
[14550] | 628 |
|
---|
| 629 | var link = PerformRelinking(p1, p2, token, delink: false);
|
---|
[14563] | 630 |
|
---|
[14550] | 631 | // new best solutions are improved using hill climbing in full solution space
|
---|
| 632 | if (Context.Population.All(p => Context.IsBetter(link, p)))
|
---|
| 633 | HillClimb(link, token);
|
---|
| 634 | else if (!Eq(link, p1) && !Eq(link, p2) && Context.HillclimbingSuited(link.Fitness))
|
---|
| 635 | HillClimb(link, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }, inverse: true));
|
---|
| 636 |
|
---|
| 637 | return link;
|
---|
[14420] | 638 | }
|
---|
| 639 |
|
---|
[14544] | 640 | protected virtual ISingleObjectiveSolutionScope<TSolution> Delink(CancellationToken token) {
|
---|
| 641 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
| 642 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
| 643 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
[14420] | 644 |
|
---|
[14544] | 645 | var p1 = Context.AtPopulation(i1);
|
---|
| 646 | var p2 = Context.AtPopulation(i2);
|
---|
[14550] | 647 |
|
---|
[14563] | 648 | if (!Context.DelinkSuited(p1, p2, Dist(p1, p2))) return null;
|
---|
[14544] | 649 |
|
---|
[14550] | 650 | var link = PerformRelinking(p1, p2, token, delink: true);
|
---|
[14563] | 651 |
|
---|
[14550] | 652 | // new best solutions are improved using hill climbing in full solution space
|
---|
| 653 | if (Context.Population.All(p => Context.IsBetter(link, p)))
|
---|
| 654 | HillClimb(link, token);
|
---|
[14563] | 655 | // intentionally not making hill climbing otherwise after delinking in sub-space
|
---|
[14550] | 656 | return link;
|
---|
[14420] | 657 | }
|
---|
| 658 |
|
---|
[14544] | 659 | protected virtual ISingleObjectiveSolutionScope<TSolution> PerformRelinking(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token, bool delink = false) {
|
---|
| 660 | var relink = Link(a, b, token, delink);
|
---|
[14420] | 661 |
|
---|
[14544] | 662 | if (double.IsNaN(relink.Fitness)) {
|
---|
[14552] | 663 | Context.Evaluate(relink, token);
|
---|
[14544] | 664 | Context.IncrementEvaluatedSolutions(1);
|
---|
[14420] | 665 | }
|
---|
| 666 |
|
---|
[14544] | 667 | if (delink) {
|
---|
[14563] | 668 | Context.AddDelinkingResult(a, b, Dist(a, b), relink);
|
---|
[14544] | 669 | } else {
|
---|
[14563] | 670 | Context.AddRelinkingResult(a, b, Dist(a, b), relink);
|
---|
[14453] | 671 | }
|
---|
[14563] | 672 |
|
---|
[14544] | 673 | return relink;
|
---|
[14420] | 674 | }
|
---|
| 675 |
|
---|
[14544] | 676 | protected abstract ISingleObjectiveSolutionScope<TSolution> Link(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token, bool delink = false);
|
---|
| 677 | #endregion
|
---|
[14420] | 678 |
|
---|
[14544] | 679 | #region Sample
|
---|
| 680 | protected virtual ISingleObjectiveSolutionScope<TSolution> Sample(CancellationToken token) {
|
---|
[14550] | 681 | if (Context.PopulationCount == MaximumPopulationSize) {
|
---|
[14544] | 682 | SolutionModelTrainerParameter.Value.TrainModel(Context);
|
---|
| 683 | ISingleObjectiveSolutionScope<TSolution> bestSample = null;
|
---|
| 684 | var tries = 1;
|
---|
[14563] | 685 | var avgDist = (from a in Context.Population.Shuffle(Context.Random)
|
---|
| 686 | from b in Context.Population.Shuffle(Context.Random)
|
---|
| 687 | select Dist(a, b)).Average();
|
---|
[14550] | 688 | for (; tries < 100; tries++) {
|
---|
[14552] | 689 | var sample = Context.ToScope(Context.Model.Sample());
|
---|
| 690 | Context.Evaluate(sample, token);
|
---|
[14544] | 691 | if (bestSample == null || Context.IsBetter(sample, bestSample)) {
|
---|
| 692 | bestSample = sample;
|
---|
[14550] | 693 | if (Context.Population.Any(x => !Context.IsBetter(x, bestSample))) break;
|
---|
[14544] | 694 | }
|
---|
[14563] | 695 | if (!Context.SamplingSuited(avgDist)) break;
|
---|
[14420] | 696 | }
|
---|
[14544] | 697 | Context.IncrementEvaluatedSolutions(tries);
|
---|
[14563] | 698 | Context.AddSamplingResult(bestSample, avgDist);
|
---|
[14544] | 699 | return bestSample;
|
---|
[14420] | 700 | }
|
---|
[14544] | 701 | return null;
|
---|
[14420] | 702 | }
|
---|
[14544] | 703 | #endregion
|
---|
[14420] | 704 |
|
---|
| 705 | protected virtual bool Terminate() {
|
---|
[14552] | 706 | var maximization = ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value;
|
---|
[14420] | 707 | return MaximumEvaluations.HasValue && Context.EvaluatedSolutions >= MaximumEvaluations.Value
|
---|
| 708 | || MaximumExecutionTime.HasValue && ExecutionTime >= MaximumExecutionTime.Value
|
---|
[14552] | 709 | || TargetQuality.HasValue && (maximization && Context.BestQuality >= TargetQuality.Value
|
---|
| 710 | || !maximization && Context.BestQuality <= TargetQuality.Value);
|
---|
[14420] | 711 | }
|
---|
| 712 |
|
---|
| 713 | public event PropertyChangedEventHandler PropertyChanged;
|
---|
| 714 | protected void OnPropertyChanged(string property) {
|
---|
| 715 | var handler = PropertyChanged;
|
---|
| 716 | if (handler != null) handler(this, new PropertyChangedEventArgs(property));
|
---|
| 717 | }
|
---|
| 718 | }
|
---|
| 719 | }
|
---|