Free cookie consent management tool by TermsFeed Policy Generator

source: branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/LinearLinkage/LinearLinkageMemPR.cs @ 14550

Last change on this file since 14550 was 14550, checked in by abeham, 8 years ago

#2701:

  • Added BinaryVectorEqualityComparer (identical to the one in the P3 plugin) to binaryvector plugin
  • Added delinking for absolute coded permutations
  • Some tweaks
File size: 13.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Threading;
26using HeuristicLab.Algorithms.MemPR.Interfaces;
27using HeuristicLab.Algorithms.MemPR.Util;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Encodings.LinearLinkageEncoding;
31using HeuristicLab.Optimization;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.PluginInfrastructure;
34
35namespace HeuristicLab.Algorithms.MemPR.Grouping {
36  [Item("MemPR (linear linkage)", "MemPR implementation for linear linkage vectors.")]
37  [StorableClass]
38  [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 999)]
39  public class LinearLinkageMemPR : MemPRAlgorithm<SingleObjectiveBasicProblem<LinearLinkageEncoding>, LinearLinkage, LinearLinkageMemPRPopulationContext, LinearLinkageMemPRSolutionContext> {
40    [StorableConstructor]
41    protected LinearLinkageMemPR(bool deserializing) : base(deserializing) { }
42    protected LinearLinkageMemPR(LinearLinkageMemPR original, Cloner cloner) : base(original, cloner) { }
43    public LinearLinkageMemPR() {
44      foreach (var trainer in ApplicationManager.Manager.GetInstances<ISolutionModelTrainer<LinearLinkageMemPRPopulationContext>>())
45        SolutionModelTrainerParameter.ValidValues.Add(trainer);
46     
47      foreach (var localSearch in ApplicationManager.Manager.GetInstances<ILocalSearch<LinearLinkageMemPRSolutionContext>>()) {
48        LocalSearchParameter.ValidValues.Add(localSearch);
49      }
50    }
51
52    public override IDeepCloneable Clone(Cloner cloner) {
53      return new LinearLinkageMemPR(this, cloner);
54    }
55
56    protected override bool Eq(LinearLinkage a, LinearLinkage b) {
57      if (a.Length != b.Length) return false;
58      for (var i = 0; i < a.Length; i++)
59        if (a[i] != b[i]) return false;
60      return true;
61    }
62
63    protected override double Dist(ISingleObjectiveSolutionScope<LinearLinkage> a, ISingleObjectiveSolutionScope<LinearLinkage> b) {
64      return Dist(a.Solution, b.Solution);
65    }
66
67    private double Dist(LinearLinkage a, LinearLinkage b) {
68      return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a, b);
69    }
70
71    protected override ISingleObjectiveSolutionScope<LinearLinkage> ToScope(LinearLinkage code, double fitness = double.NaN) {
72      var creator = Problem.SolutionCreator as ILinearLinkageCreator;
73      if (creator == null) throw new InvalidOperationException("Can only solve linear linkage encoded problems with MemPR (linear linkage)");
74      return new SingleObjectiveSolutionScope<LinearLinkage>(code, creator.LLEParameter.ActualName, fitness, Problem.Evaluator.QualityParameter.ActualName) {
75        Parent = Context.Scope
76      };
77    }
78
79    protected override ISolutionSubspace<LinearLinkage> CalculateSubspace(IEnumerable<LinearLinkage> solutions, bool inverse = false) {
80      var pop = solutions.ToList();
81      var N = pop[0].Length;
82      var subspace = new bool[N];
83      for (var i = 0; i < N; i++) {
84        var val = pop[0][i];
85        if (inverse) subspace[i] = true;
86        for (var p = 1; p < pop.Count; p++) {
87          if (pop[p][i] != val) subspace[i] = !inverse;
88        }
89      }
90      return new LinearLinkageSolutionSubspace(subspace);
91    }
92
93    protected override void AdaptiveWalk(
94        ISingleObjectiveSolutionScope<LinearLinkage> scope,
95        int maxEvals, CancellationToken token,
96        ISolutionSubspace<LinearLinkage> sub_space = null) {
97      var maximization = Context.Problem.Maximization;
98      var subspace = sub_space is LinearLinkageSolutionSubspace ? ((LinearLinkageSolutionSubspace)sub_space).Subspace : null;
99      var evaluations = 0;
100      var quality = scope.Fitness;
101      if (double.IsNaN(quality)) {
102        Evaluate(scope, token);
103        quality = scope.Fitness;
104        evaluations++;
105        if (evaluations >= maxEvals) return;
106      }
107      var bestQuality = quality;
108      var currentScope = (ISingleObjectiveSolutionScope<LinearLinkage>)scope.Clone();
109      var current = currentScope.Solution;
110      LinearLinkage bestOfTheWalk = null;
111      var bestOfTheWalkF = double.NaN;
112
113      var tabu = new double[current.Length, current.Length];
114      for (var i = 0; i < current.Length; i++) {
115        for (var j = i; j < current.Length; j++) {
116          tabu[i, j] = tabu[j, i] = maximization ? double.MinValue : double.MaxValue;
117        }
118        tabu[i, current[i]] = quality;
119      }
120
121      // this dictionary holds the last relevant links
122      var groupItems = new List<int>();
123      var lleb = current.ToBackLinks();
124      Move bestOfTheRest = null;
125      var bestOfTheRestF = double.NaN;
126      var lastAppliedMove = -1;
127      for (var iter = 0; iter < int.MaxValue; iter++) {
128        // clear the dictionary before a new pass through the array is made
129        groupItems.Clear();
130        for (var i = 0; i < current.Length; i++) {
131          if (subspace != null && !subspace[i]) {
132            if (lleb[i] != i)
133              groupItems.Remove(lleb[i]);
134            groupItems.Add(i);
135            continue;
136          }
137
138          var next = current[i];
139
140          if (lastAppliedMove == i) {
141            if (bestOfTheRest != null) {
142              bestOfTheRest.Apply(current);
143              bestOfTheRest.ApplyToLLEb(lleb);
144              currentScope.Fitness = bestOfTheRestF;
145              quality = bestOfTheRestF;
146              if (maximization) {
147                tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF);
148                tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF);
149              } else {
150                tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF);
151                tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF);
152              }
153              if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) {
154                bestOfTheWalk = (LinearLinkage)current.Clone();
155                bestOfTheWalkF = bestOfTheRestF;
156              }
157              bestOfTheRest = null;
158              bestOfTheRestF = double.NaN;
159              lastAppliedMove = i;
160            } else {
161              lastAppliedMove = -1;
162            }
163            break;
164          } else {
165            foreach (var move in MoveGenerator.GenerateForItem(i, groupItems, current, lleb)) {
166              // we intend to break link i -> next
167              var qualityToBreak = tabu[i, next];
168              move.Apply(current);
169              var qualityToRestore = tabu[i, current[i]]; // current[i] is new next
170              Evaluate(currentScope, token);
171              evaluations++;
172              var moveF = currentScope.Fitness;
173              var isNotTabu = FitnessComparer.IsBetter(maximization, moveF, qualityToBreak)
174                              && FitnessComparer.IsBetter(maximization, moveF, qualityToRestore);
175              var isImprovement = FitnessComparer.IsBetter(maximization, moveF, quality);
176              var isAspired = FitnessComparer.IsBetter(maximization, moveF, bestQuality);
177              if ((isNotTabu && isImprovement) || isAspired) {
178                if (maximization) {
179                  tabu[i, next] = Math.Max(tabu[i, next], moveF);
180                  tabu[i, current[i]] = Math.Max(tabu[i, current[i]], moveF);
181                } else {
182                  tabu[i, next] = Math.Min(tabu[i, next], moveF);
183                  tabu[i, current[i]] = Math.Min(tabu[i, current[i]], moveF);
184                }
185                quality = moveF;
186                if (isAspired) bestQuality = quality;
187
188                move.ApplyToLLEb(lleb);
189
190                if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheWalkF)) {
191                  bestOfTheWalk = (LinearLinkage)current.Clone();
192                  bestOfTheWalkF = moveF;
193                }
194
195                bestOfTheRest = null;
196                bestOfTheRestF = double.NaN;
197                lastAppliedMove = i;
198                break;
199              } else {
200                if (isNotTabu) {
201                  if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheRestF)) {
202                    bestOfTheRest = move;
203                    bestOfTheRestF = moveF;
204                  }
205                }
206                move.Undo(current);
207                currentScope.Fitness = quality;
208              }
209              if (evaluations >= maxEvals) break;
210            }
211          }
212          if (lleb[i] != i)
213            groupItems.Remove(lleb[i]);
214          groupItems.Add(i);
215          if (evaluations >= maxEvals) break;
216          if (token.IsCancellationRequested) break;
217        }
218        if (lastAppliedMove == -1) { // no move has been applied
219          if (bestOfTheRest != null) {
220            var i = bestOfTheRest.Item;
221            var next = current[i];
222            bestOfTheRest.Apply(current);
223            currentScope.Fitness = bestOfTheRestF;
224            quality = bestOfTheRestF;
225            if (maximization) {
226              tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF);
227              tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF);
228            } else {
229              tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF);
230              tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF);
231            }
232            if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) {
233              bestOfTheWalk = (LinearLinkage)current.Clone();
234              bestOfTheWalkF = bestOfTheRestF;
235            }
236
237            bestOfTheRest = null;
238            bestOfTheRestF = double.NaN;
239          } else break;
240        }
241        if (evaluations >= maxEvals) break;
242        if (token.IsCancellationRequested) break;
243      }
244      if (bestOfTheWalk != null) {
245        scope.Solution = bestOfTheWalk;
246        scope.Fitness = bestOfTheWalkF;
247      }
248    }
249
250    protected override ISingleObjectiveSolutionScope<LinearLinkage> Breed(ISingleObjectiveSolutionScope<LinearLinkage> p1Scope, ISingleObjectiveSolutionScope<LinearLinkage> p2Scope, CancellationToken token) {
251      var cache = new HashSet<LinearLinkage>(new LinearLinkageEqualityComparer());
252      var cachehits = 0;
253      var evaluations = 1;
254      ISingleObjectiveSolutionScope<LinearLinkage> offspring = null;
255      for (; evaluations < p1Scope.Solution.Length; evaluations++) {
256        var code = GroupCrossover.Apply(Context.Random, p1Scope.Solution, p2Scope.Solution);
257        if (cache.Contains(code)) {
258          cachehits++;
259          if (cachehits > 10) break;
260          continue;
261        }
262        var probe = ToScope(code);
263        Evaluate(probe, token);
264        cache.Add(code);
265        if (offspring == null || Context.IsBetter(probe, offspring)) {
266          offspring = probe;
267          if (Context.IsBetter(offspring, p1Scope) && Context.IsBetter(offspring, p2Scope))
268            break;
269        }
270      }
271      Context.IncrementEvaluatedSolutions(evaluations-1);
272      return offspring;
273    }
274
275    protected override ISingleObjectiveSolutionScope<LinearLinkage> Link(ISingleObjectiveSolutionScope<LinearLinkage> a, ISingleObjectiveSolutionScope<LinearLinkage> b, CancellationToken token, bool delink = false) {
276      var evaluations = 0;
277      if (double.IsNaN(a.Fitness)) {
278        Evaluate(a, token);
279        evaluations++;
280      }
281      if (double.IsNaN(b.Fitness)) {
282        Evaluate(b, token);
283        evaluations++;
284      }
285
286      var probe = (ISingleObjectiveSolutionScope<LinearLinkage>)a.Clone();
287      ISingleObjectiveSolutionScope<LinearLinkage> best = null;
288      while (true) {
289        Move bestMove = null;
290        var bestMoveQ = double.NaN;
291        // this approach may not fully relink the two solutions
292        foreach (var m in MoveGenerator.Generate(probe.Solution)) {
293          var distBefore = Dist(probe, b);
294          m.Apply(probe.Solution);
295          var distAfter = Dist(probe, b);
296          // consider all moves that would increase the distance between probe and b
297          // or decrease it depending on whether we do delinking or relinking
298          if (delink && distAfter > distBefore || !delink && distAfter < distBefore) {
299            var beforeQ = probe.Fitness;
300            Evaluate(probe, token);
301            evaluations++;
302            var q = probe.Fitness;
303            m.Undo(probe.Solution);
304            probe.Fitness = beforeQ;
305
306            if (Context.IsBetter(q, bestMoveQ)) {
307              bestMove = m;
308              bestMoveQ = q;
309            }
310            if (Context.IsBetter(q, beforeQ)) break;
311          } else m.Undo(probe.Solution);
312        }
313        if (bestMove == null) break;
314        bestMove.Apply(probe.Solution);
315        probe.Fitness = bestMoveQ;
316        if (best == null || Context.IsBetter(probe, best))
317          best = (ISingleObjectiveSolutionScope<LinearLinkage>)probe.Clone();
318      }
319      Context.IncrementEvaluatedSolutions(evaluations);
320
321      return best ?? probe;
322    }
323  }
324}
Note: See TracBrowser for help on using the repository browser.