1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Random;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.MemPR.Binary.SolutionModel.Univariate {
|
---|
34 | [Item("Univariate solution model (binary)", "")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class UnivariateModel : Item, ISolutionModel<BinaryVector> {
|
---|
37 | [Storable]
|
---|
38 | public DoubleArray Probabilities { get; set; }
|
---|
39 | [Storable]
|
---|
40 | public IRandom Random { get; set; }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | private UnivariateModel(bool deserializing) : base(deserializing) { }
|
---|
44 | private UnivariateModel(UnivariateModel original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | Probabilities = cloner.Clone(original.Probabilities);
|
---|
47 | Random = cloner.Clone(original.Random);
|
---|
48 | }
|
---|
49 | public UnivariateModel(IRandom random, int N) : this(random, Enumerable.Range(0, N).Select(x => 0.5).ToArray()) { }
|
---|
50 | public UnivariateModel(IRandom random, double[] probabilities) {
|
---|
51 | Probabilities = new DoubleArray(probabilities);
|
---|
52 | Random = random;
|
---|
53 | }
|
---|
54 | public UnivariateModel(IRandom random, DoubleArray probabilties) {
|
---|
55 | Probabilities = probabilties;
|
---|
56 | Random = random;
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
60 | return new UnivariateModel(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public BinaryVector Sample() {
|
---|
64 | var vec = new BinaryVector(Probabilities.Length);
|
---|
65 | for (var i = 0; i < Probabilities.Length; i++)
|
---|
66 | vec[i] = Random.NextDouble() < Probabilities[i];
|
---|
67 | return vec;
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static ISolutionModel<BinaryVector> CreateWithoutBias(IRandom random, IEnumerable<BinaryVector> population) {
|
---|
71 | double[] model = null;
|
---|
72 | var popSize = 0;
|
---|
73 | foreach (var p in population) {
|
---|
74 | popSize++;
|
---|
75 | if (model == null) model = new double[p.Length];
|
---|
76 | for (var x = 0; x < model.Length; x++) {
|
---|
77 | if (p[x]) model[x]++;
|
---|
78 | }
|
---|
79 | }
|
---|
80 | if (model == null) throw new ArgumentException("Cannot train model from empty population.");
|
---|
81 | // normalize to [0;1]
|
---|
82 | var factor = 1.0 / popSize;
|
---|
83 | for (var x = 0; x < model.Length; x++) {
|
---|
84 | model[x] *= factor;
|
---|
85 | }
|
---|
86 | return new UnivariateModel(random, model);
|
---|
87 | }
|
---|
88 |
|
---|
89 | public static ISolutionModel<BinaryVector> CreateWithRankBias(IRandom random, bool maximization, IEnumerable<BinaryVector> population, IEnumerable<double> qualities) {
|
---|
90 | var popSize = 0;
|
---|
91 |
|
---|
92 | double[] model = null;
|
---|
93 | var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q });
|
---|
94 | foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) {
|
---|
95 | // from worst to best, worst solution has 1 vote, best solution N votes
|
---|
96 | popSize++;
|
---|
97 | if (model == null) model = new double[ind.Solution.Length];
|
---|
98 | for (var x = 0; x < model.Length; x++) {
|
---|
99 | if (ind.Solution[x]) model[x] += popSize;
|
---|
100 | }
|
---|
101 | }
|
---|
102 | if (model == null) throw new ArgumentException("Cannot train model from empty population.");
|
---|
103 | // normalize to [0;1]
|
---|
104 | var factor = 2.0 / (popSize + 1);
|
---|
105 | for (var i = 0; i < model.Length; i++) {
|
---|
106 | model[i] *= factor / popSize;
|
---|
107 | }
|
---|
108 | return new UnivariateModel(random, model);
|
---|
109 | }
|
---|
110 |
|
---|
111 | public static ISolutionModel<BinaryVector> CreateWithFitnessBias(IRandom random, bool maximization, IEnumerable<BinaryVector> population, IEnumerable<double> qualities) {
|
---|
112 | var proportions = RandomEnumerable.PrepareProportional(qualities, true, !maximization);
|
---|
113 | var factor = 1.0 / proportions.Sum();
|
---|
114 | double[] model = null;
|
---|
115 | foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) {
|
---|
116 | if (model == null) model = new double[ind.Solution.Length];
|
---|
117 | for (var x = 0; x < model.Length; x++) {
|
---|
118 | if (ind.Solution[x]) model[x] += ind.Proportion * factor;
|
---|
119 | }
|
---|
120 | }
|
---|
121 | if (model == null) throw new ArgumentException("Cannot train model from empty population.");
|
---|
122 | return new UnivariateModel(random, model);
|
---|
123 | }
|
---|
124 | }
|
---|
125 | }
|
---|