1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.MemPR.Binary.SolutionModel.Univariate {
|
---|
31 | [Item("Unbiased Univariate Model Trainer (binary)", "", ExcludeGenericTypeInfo = true)]
|
---|
32 | [StorableClass]
|
---|
33 | public class UniasedModelTrainer<TContext> : NamedItem, ISolutionModelTrainer<TContext>
|
---|
34 | where TContext : IPopulationBasedHeuristicAlgorithmContext<ISingleObjectiveHeuristicOptimizationProblem, BinaryVector>, ISolutionModelContext<BinaryVector> {
|
---|
35 |
|
---|
36 | public bool Bias { get { return false; } }
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | protected UniasedModelTrainer(bool deserializing) : base(deserializing) { }
|
---|
40 | protected UniasedModelTrainer(UniasedModelTrainer<TContext> original, Cloner cloner) : base(original, cloner) { }
|
---|
41 | public UniasedModelTrainer() {
|
---|
42 | Name = ItemName;
|
---|
43 | Description = ItemDescription;
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
47 | return new UniasedModelTrainer<TContext>(this, cloner);
|
---|
48 | }
|
---|
49 |
|
---|
50 | public void TrainModel(TContext context) {
|
---|
51 | context.Model = Trainer.TrainUnbiased(context.Random, context.Population.Select(x => x.Solution));
|
---|
52 | }
|
---|
53 | }
|
---|
54 | }
|
---|