Free cookie consent management tool by TermsFeed Policy Generator

source: branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Binary/SolutionModel/Univariate/UnbiasedModelTrainer.cs @ 14429

Last change on this file since 14429 was 14420, checked in by abeham, 8 years ago

#2708: added binary version of mempr with new concepts of scope in basic alg

File size: 2.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.BinaryVectorEncoding;
26using HeuristicLab.Optimization;
27using HeuristicLab.Optimization.SolutionModel;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Encodings.Binary.SolutionModel.Univariate {
31  [Item("Uniased Univariate Model Trainer (binary)", "")]
32  [StorableClass]
33  public class UnbiasedModelTrainer<TContext> : UnbiasedModelTrainerOperator, IBinarySolutionModelTrainer<TContext>
34    where TContext : ISolutionModelContext<BinaryVector>, IPopulationContext<BinaryVector>, IStochasticContext {
35   
36    [StorableConstructor]
37    protected UnbiasedModelTrainer(bool deserializing) : base(deserializing) { }
38    protected UnbiasedModelTrainer(UnbiasedModelTrainer<TContext> original, Cloner cloner) : base(original, cloner) { }
39    public UnbiasedModelTrainer() { }
40
41    public override IDeepCloneable Clone(Cloner cloner) {
42      return new UnbiasedModelTrainer<TContext>(this, cloner);
43    }
44
45    public void TrainModel(TContext context) {
46      context.Model = UnivariateModel.CreateWithoutBias(context.Random, context.Population.Select(x => x.Solution));
47    }
48  }
49}
Note: See TracBrowser for help on using the repository browser.