[15348] | 1 | using System;
|
---|
| 2 | using System.Linq;
|
---|
| 3 | using System.Windows.Forms;
|
---|
| 4 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
| 5 | using MathNet.Numerics.Distributions;
|
---|
| 6 |
|
---|
| 7 | namespace Testing {
|
---|
| 8 | public partial class TestForm : Form {
|
---|
| 9 | public TestForm() {
|
---|
| 10 | InitializeComponent();
|
---|
| 11 |
|
---|
| 12 | //Interpolate();
|
---|
| 13 | MinAdaptiveGradientSampling();
|
---|
| 14 | }
|
---|
| 15 |
|
---|
| 16 | // E P p v T Tmax
|
---|
| 17 | double[,] data = new double[,]
|
---|
| 18 | {
|
---|
| 19 | {0.8368, 1.3357, 0.8023, 12.3839, 53.7792, 201.9808},
|
---|
| 20 | {0.5197, 1.4065, 0.5648, 17.5391, 53.0914, 162.0023},
|
---|
| 21 | {0.8406, 1.4284, 0.5660, 17.5387, 52.9766, 205.0202},
|
---|
| 22 | {1.1622, 1.4325, 0.5670, 17.5386, 53.2497, 234.6500},
|
---|
| 23 | {0.5208, 0.8740, 0.3042, 17.5388, 52.7885, 148.3409},
|
---|
| 24 | {0.8411, 0.8848, 0.3054, 17.5390, 52.7723, 172.0350},
|
---|
| 25 | {1.1628, 0.8866, 0.3060, 17.5396, 53.1371, 186.4282},
|
---|
| 26 | {0.8472, 1.9431, 0.8010, 17.5390, 52.8836, 221.6862},
|
---|
| 27 | {1.1679, 1.9221, 0.8020, 17.5391, 53.0837, 258.8506},
|
---|
| 28 | {1.5070, 1.9104, 0.8031, 17.5384, 53.3303, 286.1709},
|
---|
| 29 | {0.5085, 1.3330, 0.8003, 12.3837, 53.2506, 156.4186},
|
---|
| 30 | {0.8374, 1.3556, 0.8015, 12.3837, 53.1234, 200.7889},
|
---|
| 31 | {1.4964, 1.3682, 0.8036, 12.3838, 53.6585, 252.7940},
|
---|
| 32 | {0.5039, 0.7592, 0.5658, 9.5036, 53.6265, 149.1639},
|
---|
| 33 | {0.8291, 0.7754, 0.5671, 9.5032, 53.5168, 182.6419},
|
---|
| 34 | {1.4895, 0.7920, 0.5689, 9.5036, 53.9511, 219.4112},
|
---|
| 35 | {0.8373, 1.3749, 0.8015, 12.3835, 53.5531, 201.8539},
|
---|
| 36 | {0.5038, 0.7309, 0.8014, 6.7081, 53.7301, 152.8836},
|
---|
| 37 | {0.8278, 0.7412, 0.8031, 6.7077, 53.8957, 192.8725},
|
---|
| 38 | {1.0551, 0.7459, 0.8041, 6.7081, 54.1965, 213.8598},
|
---|
| 39 | {0.8374, 1.3772, 0.8011, 12.3836, 53.4341, 202.3147},
|
---|
| 40 | {0.5108, 1.2544, 1.4784, 6.7082, 53.7971, 162.4619},
|
---|
| 41 | {0.8344, 1.2516, 1.4843, 6.7078, 53.9234, 215.3835},
|
---|
| 42 | {1.0614, 1.2461, 1.4868, 6.7079, 54.0830, 244.6310},
|
---|
| 43 | {0.8370, 1.3392, 0.8009, 12.3842, 53.4277, 200.7755},
|
---|
| 44 | {0.5167, 1.6944, 2.0975, 6.7078, 53.8257, 166.3573},
|
---|
| 45 | {0.8405, 1.6901, 2.1060, 6.7078, 53.8974, 224.3230},
|
---|
| 46 | {1.0674, 1.6778, 2.1095, 6.7082, 54.1107, 257.8381},
|
---|
| 47 | {0.8371, 1.3172, 0.8010, 12.3839, 53.4347, 199.6043},
|
---|
| 48 | {0.8329, 1.2290, 0.2155, 24.8521, 52.6891, 175.7116},
|
---|
| 49 | {1.1958, 0.9784, 0.2163, 24.8525, 52.8742, 197.7365},
|
---|
| 50 | {1.5166, 0.9721, 0.2168, 24.8520, 53.0470, 213.4699},
|
---|
| 51 | {0.8383, 1.4018, 0.8009, 12.3835, 53.5269, 201.9488},
|
---|
| 52 | {0.8453, 1.5948, 0.3972, 24.8515, 52.8218, 205.8914},
|
---|
| 53 | {1.1740, 1.5958, 0.3981, 24.8518, 52.7543, 236.6865},
|
---|
| 54 | {1.4963, 1.6219, 0.3988, 24.8524, 53.1004, 260.2091},
|
---|
| 55 | {0.8383, 1.4094, 0.8008, 12.3838, 53.6704, 202.8565},
|
---|
| 56 | {0.8538, 2.1021, 0.5648, 24.8523, 52.6869, 221.3082},
|
---|
| 57 | {1.1752, 2.0947, 0.5656, 24.8519, 52.8542, 260.5521},
|
---|
| 58 | {1.4978, 2.0919, 0.5661, 24.8529, 53.2062, 291.1189},
|
---|
| 59 | {0.8383, 1.3991, 0.8004, 12.3842, 53.5893, 201.8672},
|
---|
| 60 | {0.8423, 1.8295, 1.4793, 9.5039, 53.7088, 219.3284},
|
---|
| 61 | {1.1670, 1.8139, 1.4836, 9.5038, 53.8615, 262.5016},
|
---|
| 62 | {1.5025, 1.7922, 1.4866, 9.5035, 54.1248, 297.1750},
|
---|
| 63 | {0.8377, 1.3349, 0.8005, 12.3838, 53.6432, 198.6240},
|
---|
| 64 | {0.8371, 1.2622, 0.8137, 12.3844, 101.9483, 240.1088},
|
---|
| 65 | {0.5196, 1.3274, 0.5751, 17.5397, 102.0049, 202.1158},
|
---|
| 66 | {0.8409, 1.3472, 0.5760, 17.5391, 100.8094, 239.7598},
|
---|
| 67 | {1.1625, 1.3534, 0.5763, 17.5390, 100.9805, 265.2706},
|
---|
| 68 | {0.5225, 0.8233, 0.3109, 17.5394, 100.0307, 186.0851},
|
---|
| 69 | {0.8433, 0.8225, 0.3116, 17.5395, 99.9612, 207.5332},
|
---|
| 70 | {1.1640, 0.8288, 0.3120, 17.5393, 100.3567, 222.7550},
|
---|
| 71 | {0.8473, 1.8966, 0.8123, 17.5390, 100.1643, 254.6133},
|
---|
| 72 | {1.1681, 1.8691, 0.8132, 17.5392, 100.3375, 289.9712},
|
---|
| 73 | {1.5075, 1.8382, 0.8136, 17.5392, 100.7590, 315.6024},
|
---|
| 74 | {0.5081, 1.2802, 0.8109, 12.3841, 100.6839, 196.4331},
|
---|
| 75 | {0.8371, 1.2978, 0.8123, 12.3839, 100.6797, 238.7059},
|
---|
| 76 | {1.4964, 1.2975, 0.8145, 12.3835, 101.5454, 286.6940},
|
---|
| 77 | {0.5038, 0.7123, 0.5749, 9.5036, 101.3295, 185.5991},
|
---|
| 78 | {0.8289, 0.7297, 0.5757, 9.5036, 101.3065, 214.1675},
|
---|
| 79 | {1.4891, 0.7365, 0.5764, 9.5035, 102.1764, 244.6417},
|
---|
| 80 | {0.8374, 1.3175, 0.8121, 12.3840, 101.3808, 240.0907},
|
---|
| 81 | {0.5037, 0.7071, 0.8116, 6.7080, 102.1794, 191.0549},
|
---|
| 82 | {0.8278, 0.7135, 0.8142, 6.7079, 102.5190, 225.8846},
|
---|
| 83 | {1.0549, 0.7150, 0.8156, 6.7079, 102.9568, 243.3557},
|
---|
| 84 | {0.8371, 1.3160, 0.8119, 12.3841, 101.1813, 240.1163},
|
---|
| 85 | {0.5110, 1.2456, 1.5031, 6.7075, 102.2212, 200.6899},
|
---|
| 86 | {0.8345, 1.2408, 1.5095, 6.7075, 102.5058, 249.4029},
|
---|
| 87 | {1.0615, 1.2257, 1.5114, 6.7077, 103.0208, 276.3802},
|
---|
| 88 | {0.8372, 1.2756, 0.8115, 12.3839, 101.2421, 239.1648},
|
---|
| 89 | {0.5168, 1.6720, 2.1301, 6.7078, 102.2741, 204.8973},
|
---|
| 90 | {0.8403, 1.6587, 2.1390, 6.7079, 102.5263, 258.4755},
|
---|
| 91 | {1.0668, 1.6367, 2.1399, 6.7078, 102.9995, 291.2107},
|
---|
| 92 | {0.8368, 1.2379, 0.8111, 12.3839, 101.3221, 238.3200},
|
---|
| 93 | {0.8191, 1.3475, 0.2200, 24.8519, 99.4185, 213.5561},
|
---|
| 94 | {1.1952, 0.9615, 0.2205, 24.8520, 99.7065, 237.2100},
|
---|
| 95 | {1.5198, 0.9392, 0.2206, 24.8526, 100.2240, 254.1504},
|
---|
| 96 | {0.8373, 1.3301, 0.8111, 12.3842, 101.4987, 239.6880},
|
---|
| 97 | {0.8401, 1.5435, 0.4047, 24.8529, 99.6446, 242.0860},
|
---|
| 98 | {1.1737, 1.5140, 0.4051, 24.8520, 99.8763, 270.9338},
|
---|
| 99 | {1.4966, 1.5101, 0.4053, 24.8527, 100.3614, 295.7137},
|
---|
| 100 | {0.8370, 1.3303, 0.8109, 12.3839, 101.5883, 239.4128},
|
---|
| 101 | {0.8515, 2.0246, 0.5744, 24.8527, 99.7521, 256.5944},
|
---|
| 102 | {1.1740, 2.0306, 0.5749, 24.8528, 99.9245, 293.3329},
|
---|
| 103 | {1.4970, 2.0055, 0.5749, 24.8522, 100.4382, 320.3913},
|
---|
| 104 | {0.8373, 1.3181, 0.8106, 12.3846, 101.6315, 238.0053},
|
---|
| 105 | {0.8417, 1.7571, 1.5057, 9.5039, 102.0292, 251.9787},
|
---|
| 106 | {1.1665, 1.7413, 1.5092, 9.5036, 102.2874, 292.1148},
|
---|
| 107 | {1.5021, 1.7017, 1.5109, 9.5040, 102.7524, 325.0641},
|
---|
| 108 | {0.8365, 1.2463, 0.8105, 12.3839, 101.9477, 236.4320},
|
---|
| 109 | {0.8370, 1.2600, 0.8101, 12.3843, 104.2213, 240.013},
|
---|
| 110 | };
|
---|
| 111 |
|
---|
| 112 |
|
---|
| 113 |
|
---|
| 114 | //private void MinBleic() {
|
---|
| 115 | //
|
---|
| 116 | // double[] w = new double[14];
|
---|
| 117 | // double[] optW;
|
---|
| 118 | //
|
---|
| 119 | // double[,] constraints = new double[,]
|
---|
| 120 | // {
|
---|
| 121 | // // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 y
|
---|
| 122 | // {0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0 }
|
---|
| 123 | // };
|
---|
| 124 | // int[] constraintType = new int[]
|
---|
| 125 | // {
|
---|
| 126 | // -1
|
---|
| 127 | // };
|
---|
| 128 | //
|
---|
| 129 | // alglib.minbleicstate state;
|
---|
| 130 | // alglib.minbleicreport report;
|
---|
| 131 | //
|
---|
| 132 | // alglib.minbleiccreate(w, out state);
|
---|
| 133 | // alglib.minbleicsetcond(state, 0, 1E-10, 0.0, 0);
|
---|
| 134 | // alglib.minbleicsetlc(state, constraints, constraintType);
|
---|
| 135 | // alglib.minbleicsetgradientcheck(state, 0.001);
|
---|
| 136 | // alglib.minbleicsetxrep(state, true);
|
---|
| 137 | // alglib.minbleicoptimize(state, Grad, Rep, null);
|
---|
| 138 | // alglib.minbleicresults(state, out optW, out report);
|
---|
| 139 | //
|
---|
| 140 | //}
|
---|
| 141 |
|
---|
| 142 | private AutoDiff.Term f;
|
---|
| 143 |
|
---|
| 144 | private void MinAdaptiveGradientSampling() {
|
---|
| 145 |
|
---|
| 146 | double[] w = new double[14];
|
---|
| 147 | for (int i = 0; i < w.Length; i++) w[i] = 1.0;
|
---|
| 148 | double[] optW;
|
---|
| 149 |
|
---|
| 150 | double epsx = 0.00001;
|
---|
| 151 | double radius = 100;
|
---|
| 152 | double rho = 10.0;
|
---|
| 153 | int maxits = 0;
|
---|
| 154 | int numEqConstraints = 0;
|
---|
| 155 | int numIneqConstraints = 6;
|
---|
| 156 |
|
---|
| 157 |
|
---|
| 158 | alglib.minnsstate state;
|
---|
| 159 | alglib.minnsreport report;
|
---|
| 160 |
|
---|
| 161 | alglib.minnscreate(w, out state);
|
---|
| 162 | alglib.minnssetnlc(state, numEqConstraints, numIneqConstraints);
|
---|
| 163 | alglib.minnssetalgoags(state, radius, rho);
|
---|
| 164 | alglib.minnssetcond(state, 0, 0);
|
---|
| 165 | alglib.minnssetxrep(state, true);
|
---|
| 166 | alglib.minnsoptimize(state, Jac, Rep, null);
|
---|
| 167 | alglib.minnsresults(state, out optW, out report);
|
---|
| 168 |
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 |
|
---|
| 172 | private void Rep(double[] w, double func, object o) {
|
---|
| 173 | Console.WriteLine(Math.Sqrt(func / data.GetLength(0)));
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 |
|
---|
| 177 | private void Jac(double[] w, double[] fi, double[,] jac, object o) {
|
---|
| 178 | Array.Clear(fi, 0, fi.Length);
|
---|
| 179 | Array.Clear(jac, 0, jac.Length);
|
---|
| 180 |
|
---|
| 181 | // objective function
|
---|
| 182 | double f = 0.0;
|
---|
| 183 | double[] fgrad = new double[w.Length];
|
---|
| 184 | Grad(w, ref f, fgrad, o);
|
---|
| 185 | fi[0] = f;
|
---|
| 186 | Copy(fgrad, jac, 0);
|
---|
| 187 |
|
---|
| 188 | // d Tmax / d Tmin > 0 for all valid inputs
|
---|
| 189 | fi[1] = -dTmaxOverdE(3, 4, w, fgrad);
|
---|
| 190 | Copy(fgrad, jac, 1);
|
---|
| 191 | fi[2] = -dTmaxOverdE(3, 0.1, w, fgrad);
|
---|
| 192 | Copy(fgrad, jac, 2);
|
---|
| 193 | fi[3] = -dTmaxOverdE(0.1, 4, w, fgrad);
|
---|
| 194 | Copy(fgrad, jac, 3);
|
---|
| 195 | fi[4] = -dTmaxOverdE(0.1, 0.1, w, fgrad);
|
---|
| 196 | Copy(fgrad, jac, 4);
|
---|
| 197 |
|
---|
| 198 | // d Tmax / d p > 0 for all valid inputs
|
---|
| 199 | fi[5] = -dTmaxOverdp(3, 3, 0.1, 50, w, fgrad);
|
---|
| 200 | Copy(fgrad, jac, 5);
|
---|
| 201 | fi[6] = -dTmaxOverdp(3, 0.5, 0.1, 50, w, fgrad);
|
---|
| 202 | Copy(fgrad, jac, 6);
|
---|
| 203 |
|
---|
| 204 | // d Tmax / d v > 0 for all valid inputs
|
---|
| 205 | // d Tmax / d E > 0 for all valid inputs
|
---|
| 206 |
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | private void Copy(double[] from, double[,] to, int col)
|
---|
| 210 | {
|
---|
| 211 | for (int i = 0; i < from.Length; i++) {
|
---|
| 212 | to[col, i] = from[i];
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 |
|
---|
| 217 | private void Grad(double[] w, ref double func, double[] grad, object o) {
|
---|
| 218 | //
|
---|
| 219 | double ssq = 0.0;
|
---|
| 220 | for (int i = 0; i < grad.Length; i++) grad[i] = 0.0;
|
---|
| 221 | var fgrad = new double[grad.Length];
|
---|
| 222 | for (int r = 0; r < data.GetLength(0); r++) {
|
---|
| 223 | var pred = Tmax(data[r, 0], data[r, 2], data[r, 3], data[r, 4], w, fgrad);
|
---|
| 224 | var target = data[r, 5];
|
---|
| 225 | var err = pred - target;
|
---|
| 226 | ssq += err * err;
|
---|
| 227 |
|
---|
| 228 | for (int i = 0; i < grad.Length; i++) {
|
---|
| 229 | grad[i] += -2.0 * target * fgrad[i];
|
---|
| 230 | grad[i] += 2.0 * pred * fgrad[i];
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | func = ssq;
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | private double Tmax(double E, double p, double v, double Tmin, double[] w, double[] grad) {
|
---|
| 238 | grad[0] = Tmin;
|
---|
| 239 | grad[1] = (v);
|
---|
| 240 | grad[2] = (p);
|
---|
| 241 | grad[3] = (E);
|
---|
| 242 | grad[4] = (Math.Log((p)) * v);
|
---|
| 243 | grad[5] = (Math.Log((p)) * E);
|
---|
| 244 | grad[6] = (v * p);
|
---|
| 245 | grad[7] = (Tmin * p);
|
---|
| 246 | grad[8] = (E * p);
|
---|
| 247 | grad[9] = (v * E);
|
---|
| 248 | grad[10] = (Tmin * E);
|
---|
| 249 | grad[11] = (E * E);
|
---|
| 250 | grad[12] = (E * 1 / p);
|
---|
| 251 | grad[13] = (1 / p);
|
---|
| 252 |
|
---|
| 253 | return
|
---|
| 254 | w[0] * (Tmin) +
|
---|
| 255 | w[1] * (v) +
|
---|
| 256 | w[2] * (p) +
|
---|
| 257 | w[3] * (E) +
|
---|
| 258 |
|
---|
| 259 | w[4] * (Math.Log((p)) * v) +
|
---|
| 260 | w[5] * (Math.Log((p)) * E) +
|
---|
| 261 |
|
---|
| 262 | w[6] * (v * p) +
|
---|
| 263 | w[7] * (Tmin * p) +
|
---|
| 264 | w[8] * (E * p) +
|
---|
| 265 |
|
---|
| 266 | w[9] * (v * E) +
|
---|
| 267 | w[10] * (Tmin * E) +
|
---|
| 268 | w[11] * (E * E) +
|
---|
| 269 |
|
---|
| 270 | w[12] * (E * 1 / p) +
|
---|
| 271 |
|
---|
| 272 | w[13] * (1 / p);
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | private double dTmaxOverdp(double E, double p, double v, double Tmin, double[] w, double[] grad) {
|
---|
| 276 | grad[0] = 0;
|
---|
| 277 | grad[1] = 0;
|
---|
| 278 | grad[2] = 1;
|
---|
| 279 | grad[3] = 0;
|
---|
| 280 | grad[4] = (v * 1/p);
|
---|
| 281 | grad[5] = (E * 1/p);
|
---|
| 282 | grad[6] = v ;
|
---|
| 283 | grad[7] = Tmin;
|
---|
| 284 | grad[8] = E;
|
---|
| 285 | grad[9] = 0;
|
---|
| 286 | grad[10] = 0;
|
---|
| 287 | grad[11] = 0;
|
---|
| 288 | grad[12] = -(E * 1 / (p*p));
|
---|
| 289 | grad[13] = -(1 / (p*p));
|
---|
| 290 |
|
---|
| 291 | return
|
---|
| 292 | w[2] +
|
---|
| 293 |
|
---|
| 294 | w[4] * (v * 1/p) +
|
---|
| 295 | w[5] * (E * 1/p) +
|
---|
| 296 |
|
---|
| 297 | w[6] * (v ) +
|
---|
| 298 | w[7] * (Tmin ) +
|
---|
| 299 | w[8] * (E) +
|
---|
| 300 |
|
---|
| 301 | w[12] * -(E * 1 / (p*p)) +
|
---|
| 302 |
|
---|
| 303 | w[13] * -(1 / (p*p));
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | private double dTmaxOverdE(double E, double p, double[] w, double[] grad) {
|
---|
| 307 | grad[0] = 1;
|
---|
| 308 | grad[1] = 0;
|
---|
| 309 | grad[2] = 0;
|
---|
| 310 | grad[3] = 0;
|
---|
| 311 | grad[4] = 0;
|
---|
| 312 | grad[5] = 0;
|
---|
| 313 | grad[6] = 0;
|
---|
| 314 | grad[7] = p;
|
---|
| 315 | grad[8] = 0;
|
---|
| 316 | grad[9] = 0;
|
---|
| 317 | grad[10] = E;
|
---|
| 318 | grad[11] = 0;
|
---|
| 319 | grad[12] = 0;
|
---|
| 320 | grad[13] = 0;
|
---|
| 321 |
|
---|
| 322 | return
|
---|
| 323 | w[0] +
|
---|
| 324 | w[7] * (p) +
|
---|
| 325 | w[10] * (E);
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 | private void Interpolate() {
|
---|
| 329 | chart.Series.Clear();
|
---|
| 330 |
|
---|
| 331 |
|
---|
| 332 | for (int i = 0; i < 10; i++) {
|
---|
| 333 | var s = new Series();
|
---|
| 334 | s.ChartType = SeriesChartType.FastLine;
|
---|
| 335 |
|
---|
| 336 | var noise = new Normal(0, 0.05);
|
---|
| 337 | var x = new double[] {
|
---|
| 338 | 0,
|
---|
| 339 | 1,
|
---|
| 340 | 2,
|
---|
| 341 | 3,
|
---|
| 342 | 4
|
---|
| 343 | };
|
---|
| 344 | var eps = noise.Samples().Take(x.Length).ToArray();
|
---|
| 345 | var y = new double[]
|
---|
| 346 | {
|
---|
| 347 | 16 + eps[0],
|
---|
| 348 | 9 + eps[1],
|
---|
| 349 | 4 + eps[2],
|
---|
| 350 | 1 + eps[3],
|
---|
| 351 | 0 + eps[4]
|
---|
| 352 | };
|
---|
| 353 | var spline = MathNet.Numerics.Interpolation.CubicSpline.InterpolateNatural(x, y
|
---|
| 354 | //, SplineBoundaryCondition.SecondDerivative, 0, SplineBoundaryCondition.FirstDerivative, 0
|
---|
| 355 | );
|
---|
| 356 | for (double xi = 0.0; xi < 10; xi += 0.1) {
|
---|
| 357 | s.Points.AddXY(xi, spline.Interpolate(xi));
|
---|
| 358 | Console.WriteLine("{0:N2} {1:N2}", xi, spline.Interpolate(xi));
|
---|
| 359 | }
|
---|
| 360 | chart.Series.Add(s);
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
| 363 |
|
---|
| 364 | // public void InterpolateF()
|
---|
| 365 | // {
|
---|
| 366 | // // extrapolating function
|
---|
| 367 | // // 6 unknowns
|
---|
| 368 | // // f(x,y) = xy + x² + y² + x + y + 1
|
---|
| 369 | // // df(x,y)/dx = +2x + y + 1
|
---|
| 370 | // // df(x,y)/dy = + x +2y + 1
|
---|
| 371 | //
|
---|
| 372 | // double[,] m =
|
---|
| 373 | // {
|
---|
| 374 | // // known f
|
---|
| 375 | // { 0, 1, 0, 1, 0, 1 }, // f(1,0)
|
---|
| 376 | // { 0, 0, 1, 0, 1, 1 }, // f(0,1)
|
---|
| 377 | // { 1, 1, 1, 1, 1, 1 }, // f(1,1)
|
---|
| 378 | // // known df
|
---|
| 379 | // { 0, 0, 0, 2, 0, 1 }, // df/dx(1,0)
|
---|
| 380 | // { 0, 0, 0, 0, 1, 1 }, // df/dx(0,1)
|
---|
| 381 | // { 0, 0, 0, 1, 0, 1 }, // df/dy(1,0)
|
---|
| 382 | // { 0, 0, 0, 0, 2, 1 }, // df/dy(0,1)
|
---|
| 383 | // }
|
---|
| 384 | //
|
---|
| 385 | // }
|
---|
| 386 |
|
---|
| 387 | private double F(double x, double y) {
|
---|
| 388 | return x * x + y * y + x * y + x + y + 1;
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | private double dFdx(double x, double y) {
|
---|
| 392 | return 2 * x + 1;
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | private double dFdy(double x, double y) {
|
---|
| 396 | return 2 * y + x + 1;
|
---|
| 397 | }
|
---|
| 398 | }
|
---|
| 399 | }
|
---|