1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
34 | using HeuristicLab.Random;
|
---|
35 | using MathNet.Numerics.Interpolation;
|
---|
36 | using MathNet.Numerics.LinearAlgebra.Double;
|
---|
37 | using MathNet.Numerics.LinearAlgebra.Double.Solvers;
|
---|
38 |
|
---|
39 |
|
---|
40 | /*
|
---|
41 | * Experimenting with various spline implementations.
|
---|
42 | *
|
---|
43 | * There are many different variants of using splines.
|
---|
44 | * - Spline Interpolation
|
---|
45 | * - Natural Spline Interpolation
|
---|
46 | * - Smoothing Splines (Reinsch)
|
---|
47 | * - P-Splines
|
---|
48 | * - B-Splines
|
---|
49 | * - Regression Splines
|
---|
50 | * - Penalized Regression Splines
|
---|
51 | * -
|
---|
52 | *
|
---|
53 | *
|
---|
54 | * Generally, a spline is a piecewise function whereby each piece connects two knots.
|
---|
55 | * In almost all cases splines are univariate. There are extensions to more dimensions
|
---|
56 | * but this is much less convenient.
|
---|
57 | * A linear spline is a piecewise linear function. Usually the following constaints are enforced
|
---|
58 | * for each knot point k and the two piecewise functions fl and fr
|
---|
59 | * fl(k) = fr(k), fl(k)' = fr(k)', fl(k)''=0, fr(k)''=0, additionally constraints for
|
---|
60 | * the boundary knots are often enforced.
|
---|
61 |
|
---|
62 | * Spline Interpolation solves the problem of finding a smooth interpolating function
|
---|
63 | * which goes through all knots exactly.
|
---|
64 | *
|
---|
65 | * In spline smoothing one tries to find a function minimizing the squared residuals
|
---|
66 | * and maximizing smoothness. For the smoothing spline g the optimization objective is
|
---|
67 | * || y - g(x) ||² + \lambda integrate (xmin : xmax) g(x)'' dx.
|
---|
68 | * The roughness penality is the integral over the second derivative of the smoothing spline
|
---|
69 | * over the whole domain of x. Lambda is used to balance the amount of smoothing.
|
---|
70 | * If lambda is set to zero, the solution is an interpolating spline. If lambda is set to
|
---|
71 | * infinity the solution is a maximally smooth function (= line).
|
---|
72 | * Interestingly, the estimation of a smoothing spline is a linear operation. As a consequence
|
---|
73 | * a lot of theory from linear models can be reused (e.g. cross-validation and generalized
|
---|
74 | * cross-validation) with minimal additional effort. GCV can also be used to tune the
|
---|
75 | * smoothing parameter automatically. Tuned algorithms are available to solve smoothing
|
---|
76 | * spline estimation efficiently O(n) or O(m²n) where m is the number of knots and n the
|
---|
77 | * number of data points.
|
---|
78 | * It is possible to calculate confidence intervals for the smoothing spline and given
|
---|
79 | * an error model subsequently also confidence intervals for predictions.
|
---|
80 | *
|
---|
81 | * We are primarily interested in spline smoothing / regression.
|
---|
82 | * Alglib and Math.NET provide several different implementations for interpolation
|
---|
83 | * including polynomial (cubic), Hermite, Akima, Linear, Catmull-Rom, Rational, ...
|
---|
84 | *
|
---|
85 | * For spline smoothing or regression there are also many differen variants.
|
---|
86 | *
|
---|
87 | * Smoothing Splines by Reinsch (Reinsch, Smoothing by Spline Functions, 1967).
|
---|
88 | * Pseudo-code for the algorithm is given in the paper. A small change in the algorithm
|
---|
89 | * to improve convergence is discussed in (Reinsch, Smoothing by Spline Functions II, 1970)
|
---|
90 | * The algorithm uses the properties of the smoothing matrix (bandedness) to calculate the
|
---|
91 | * smoothing spline in O(n). Two parameters have to be set (S and rho). If the noise in the
|
---|
92 | * data is known then both parameter can be set directly, otherwise S should be set to n-1
|
---|
93 | * and rho should be found via cross-validation.
|
---|
94 | * It is not easy to calculate a the CV (PRESS) or GCV in the approach by Reinsch and
|
---|
95 | * therefore the algorithm is not ideal.
|
---|
96 | * Wahba and colleagues (1990) introduced CV and GCV estimation.
|
---|
97 | * Hutchinson and colleages improved the algorithm (Fortran implementation available as
|
---|
98 | * algorithm 642.f from ACM).
|
---|
99 | *
|
---|
100 | * CUBGCV (Algorithm 642 Hutchingson)
|
---|
101 | * Several improvments over the Reinsch algorithm. In particular efficient calculation
|
---|
102 | * of the
|
---|
103 |
|
---|
104 | * Finbarr O'Sullivan BART
|
---|
105 | * ...
|
---|
106 | *
|
---|
107 | * B-Splines
|
---|
108 | * ...
|
---|
109 | *
|
---|
110 | * P-Splines (Eilers and Marx), use the B-Spline basis in combination with a penality
|
---|
111 | * for large variations of subsequent B-Spline coefficients. Conceptually, if the
|
---|
112 | * coefficients of neighbouring B-Splines are almost the same then the resulting smoothing
|
---|
113 | * spline is less wiggly. It has been critizized that this is rather subjective.
|
---|
114 | * P-Splines also allow calculation of CV and GCV for a given smoothing parameter which
|
---|
115 | * can be used for optimization of lambda.
|
---|
116 | * It is easy to use P-Splines within GAMs (no backfitting necessary).
|
---|
117 | * The paper contains MATLAB code also for the calculation of the B-Spline basis.
|
---|
118 | * The computational effort is O(?). The authors argue that it is efficient.
|
---|
119 | * The number of knots is not critical it is possible to use every data point as knot.
|
---|
120 | *
|
---|
121 | * Alglib: penalized regression spline
|
---|
122 | * ...
|
---|
123 | *
|
---|
124 | * Alglib: penalized regression spline with support for weights
|
---|
125 | * ...
|
---|
126 | */
|
---|
127 |
|
---|
128 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
129 | [Item("Splines", "")]
|
---|
130 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 102)]
|
---|
131 | [StorableClass]
|
---|
132 | public sealed class Splines : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
133 | [StorableConstructor]
|
---|
134 | private Splines(bool deserializing) : base(deserializing) { }
|
---|
135 | [StorableHook(HookType.AfterDeserialization)]
|
---|
136 | private void AfterDeserialization() {
|
---|
137 | }
|
---|
138 |
|
---|
139 | private Splines(Splines original, Cloner cloner)
|
---|
140 | : base(original, cloner) {
|
---|
141 | }
|
---|
142 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
143 | return new Splines(this, cloner);
|
---|
144 | }
|
---|
145 |
|
---|
146 | public Splines()
|
---|
147 | : base() {
|
---|
148 | var validTypes = new ItemSet<StringValue>(
|
---|
149 | new[] {
|
---|
150 | "Smoothing Spline (Reinsch)",
|
---|
151 | "Smoothing Spline (Reinsch with automatic tolerance determination using LOOCV)",
|
---|
152 | "B-Spline Smoothing",
|
---|
153 | "Penalized Regression Spline (alglib)",
|
---|
154 | "CUBGCV",
|
---|
155 | "Finnbar O'Sullivan (sbart)"
|
---|
156 | }.Select(s => new StringValue(s)));
|
---|
157 |
|
---|
158 | Parameters.Add(new ConstrainedValueParameter<StringValue>("Type", "The type of spline (as supported by alglib)", validTypes, validTypes.Last()));
|
---|
159 | Parameters.Add(new ValueParameter<DoubleValue>("Lambda", "Regularization parameter for smoothing splines (0..+inf)", new DoubleValue(100)));
|
---|
160 | Parameters.Add(new ValueParameter<DoubleValue>("StdDev (noise)", "Known error in y values. Used only be Reinsch Smoothing Splines", new DoubleValue(0.1)));
|
---|
161 | Problem = new RegressionProblem();
|
---|
162 | }
|
---|
163 |
|
---|
164 |
|
---|
165 | protected override void Run(CancellationToken cancellationToken) {
|
---|
166 | double[,] inputMatrix = Problem.ProblemData.Dataset.ToArray(Problem.ProblemData.AllowedInputVariables.Concat(new string[] { Problem.ProblemData.TargetVariable }), Problem.ProblemData.TrainingIndices);
|
---|
167 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
168 | throw new NotSupportedException("Splines does not support NaN or infinity values in the input dataset.");
|
---|
169 |
|
---|
170 | var inputVars = Problem.ProblemData.AllowedInputVariables.ToArray();
|
---|
171 | if (inputVars.Length > 3) throw new ArgumentException();
|
---|
172 |
|
---|
173 | var y = Problem.ProblemData.TargetVariableTrainingValues.ToArray();
|
---|
174 | if (inputVars.Length == 1) {
|
---|
175 |
|
---|
176 | var x = Problem.ProblemData.Dataset.GetDoubleValues(inputVars.First(), Problem.ProblemData.TrainingIndices).ToArray();
|
---|
177 | alglib.spline1dinterpolant c;
|
---|
178 | var type = ((StringValue)Parameters["Type"].ActualValue).Value;
|
---|
179 | switch (type) {
|
---|
180 | case "Smoothing Spline (Reinsch)": {
|
---|
181 | CalculateSmoothingSplineReinsch(x, y, inputVars);
|
---|
182 | break;
|
---|
183 | }
|
---|
184 | case "Smoothing Spline (Reinsch with automatic tolerance determination using LOOCV)": {
|
---|
185 | double optTol, looRMSE;
|
---|
186 | var model = CalculateSmoothingSplineReinsch(x, y, inputVars, Problem.ProblemData.TargetVariable, out optTol, out looRMSE);
|
---|
187 | Results.Add(new Result("Solution", model.CreateRegressionSolution((IRegressionProblemData)Problem.ProblemData.Clone())));
|
---|
188 | Results.Add(new Result("Optimal tolerance", new DoubleValue(optTol)));
|
---|
189 | Results.Add(new Result("RMSE (LOO-CV)", new DoubleValue(looRMSE)));
|
---|
190 | break;
|
---|
191 | }
|
---|
192 | case "CUBGCV": {
|
---|
193 | CubicSplineGCV.CubGcvReport report;
|
---|
194 | var model =
|
---|
195 | CubicSplineGCV.CalculateCubicSpline(x, y,
|
---|
196 | Problem.ProblemData.TargetVariable, inputVars, out report);
|
---|
197 | var targetVar = Problem.ProblemData.TargetVariable;
|
---|
198 | var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
|
---|
199 | Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
|
---|
200 | Results.Add(new Result("GCV", new DoubleValue(report.generalizedCrossValidation)));
|
---|
201 | Results.Add(new Result("Estimated error variance", new DoubleValue(report.estimatedErrorVariance)));
|
---|
202 | Results.Add(new Result("Estimated RSS degrees of freedom", new DoubleValue(report.estimatedRSSDegreesOfFreedom)));
|
---|
203 | Results.Add(new Result("Estimated true mean squared error at data points", new DoubleValue(report.estimatedTrueMeanSquaredErrorAtDataPoints)));
|
---|
204 | Results.Add(new Result("Mean square of DF", new DoubleValue(report.meanSquareOfDf)));
|
---|
205 | Results.Add(new Result("Mean square residual", new DoubleValue(report.meanSquareResiudal)));
|
---|
206 | Results.Add(new Result("Smoothing parameter (optimized for GCV)", new DoubleValue(report.smoothingParameter)));
|
---|
207 | break;
|
---|
208 | }
|
---|
209 | case "Finnbar O'Sullivan (sbart)": {
|
---|
210 | SBART.SBART_Report report;
|
---|
211 |
|
---|
212 | var model =
|
---|
213 | SBART.CalculateSBART(x, y,
|
---|
214 | Problem.ProblemData.TargetVariable, inputVars, out report);
|
---|
215 | var targetVar = Problem.ProblemData.TargetVariable;
|
---|
216 | var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
|
---|
217 | Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
|
---|
218 | Results.Add(new Result("GCV", new DoubleValue(report.gcv)));
|
---|
219 | Results.Add(new Result("Smoothing parameter (optimized for GCV)", new DoubleValue(report.smoothingParameter)));
|
---|
220 | break;
|
---|
221 |
|
---|
222 | }
|
---|
223 | case "Penalized Regression Spline (alglib)": {
|
---|
224 | var lambda = ((IValueParameter<DoubleValue>)Parameters["Lambda"]).Value.Value; // controls extent of smoothing
|
---|
225 | var model = CalculatePenalizedRegressionSpline(x, y, lambda, x.Length, Problem.ProblemData.TargetVariable, inputVars);
|
---|
226 | var targetVar = Problem.ProblemData.TargetVariable;
|
---|
227 | var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
|
---|
228 | Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
|
---|
229 |
|
---|
230 | break;
|
---|
231 | }
|
---|
232 | default: throw new NotSupportedException();
|
---|
233 | }
|
---|
234 |
|
---|
235 | }
|
---|
236 | }
|
---|
237 |
|
---|
238 |
|
---|
239 | public static IRegressionModel CalculatePenalizedRegressionSpline(double[] x, double[] y, double lambda, int numKnots, string targetVar, string[] inputVars) {
|
---|
240 | int info;
|
---|
241 | alglib.spline1dinterpolant interpolant;
|
---|
242 | alglib.spline1dfitreport rep;
|
---|
243 |
|
---|
244 | alglib.spline1dfitpenalized(x, y, numKnots, lambda, out info, out interpolant, out rep);
|
---|
245 | return new Spline1dModel(interpolant, targetVar, inputVars);
|
---|
246 | }
|
---|
247 |
|
---|
248 | public static IRegressionEnsembleModel CalculatePenalizedRegressionSpline(double[] x, double[] y, double lambda, string targetVar, string[] inputVars,
|
---|
249 | out double avgTrainRMSE,
|
---|
250 | out double cvRMSE, out double[] predictions) {
|
---|
251 | int info;
|
---|
252 | alglib.spline1dinterpolant interpolant;
|
---|
253 | alglib.spline1dfitreport rep;
|
---|
254 | int n = x.Length;
|
---|
255 | n = (int)Math.Max(50, 3 * Math.Sqrt(n));
|
---|
256 |
|
---|
257 | int folds = 10;
|
---|
258 | int foldSize = x.Length <= 30 ? 1 : x.Length / folds;
|
---|
259 | if (foldSize == 1) folds = x.Length;
|
---|
260 |
|
---|
261 | double[] x_loo = new double[(folds - 1) * foldSize];
|
---|
262 | double[] y_loo = new double[(folds - 1) * foldSize];
|
---|
263 | double[] w_loo = Enumerable.Repeat(1.0, x_loo.Length).ToArray();
|
---|
264 |
|
---|
265 | var models = new List<IRegressionModel>();
|
---|
266 | var sumTrainSE = 0.0;
|
---|
267 | int nTrain = 0;
|
---|
268 | var sumTestSE = 0.0;
|
---|
269 | int nTest = 0;
|
---|
270 |
|
---|
271 | predictions = new double[y.Length];
|
---|
272 |
|
---|
273 | for (int i = 0; i < folds; i++) {
|
---|
274 | if (i < folds - 1) {
|
---|
275 | //Console.WriteLine("Copy from {0} to {1} n = {2}", (i + 1) * foldSize, i * foldSize, (folds - i - 1) * foldSize);
|
---|
276 | Array.Copy(x, (i + 1) * foldSize, x_loo, i * foldSize, (folds - i - 1) * foldSize);
|
---|
277 | Array.Copy(y, (i + 1) * foldSize, y_loo, i * foldSize, (folds - i - 1) * foldSize);
|
---|
278 | }
|
---|
279 | alglib.spline1dfitpenalizedw(x_loo, y_loo, w_loo, n, lambda, out info, out interpolant, out rep);
|
---|
280 | //Debug.Assert(y_loo.All(yi => yi != 0.0));
|
---|
281 | //Debug.Assert(x_loo.All(xi => xi != 0.0));
|
---|
282 |
|
---|
283 | // training error
|
---|
284 | for (int j = 0; j < x_loo.Length; j++) {
|
---|
285 | var y_pred = alglib.spline1dcalc(interpolant, x[j]);
|
---|
286 | double res = y[j] - y_pred;
|
---|
287 | sumTrainSE += res * res;
|
---|
288 | nTrain++;
|
---|
289 | }
|
---|
290 | // test
|
---|
291 | for (int j = i * foldSize; j < (i + 1) * foldSize; j++) {
|
---|
292 | predictions[j] = alglib.spline1dcalc(interpolant, x[j]);
|
---|
293 | double res = y[j] - predictions[j];
|
---|
294 | sumTestSE += res * res;
|
---|
295 | nTest++;
|
---|
296 | }
|
---|
297 |
|
---|
298 | models.Add(new Spline1dModel(interpolant, targetVar, inputVars));
|
---|
299 |
|
---|
300 | if (i < folds - 1) {
|
---|
301 | //Console.WriteLine("Copy from {0} to {1} n = {2}", i * foldSize, i * foldSize, foldSize);
|
---|
302 | // add current fold for next iteration
|
---|
303 | Array.Copy(x, i * foldSize, x_loo, i * foldSize, foldSize);
|
---|
304 | Array.Copy(y, i * foldSize, y_loo, i * foldSize, foldSize);
|
---|
305 | }
|
---|
306 | }
|
---|
307 |
|
---|
308 | cvRMSE = Math.Sqrt(sumTestSE / nTest);
|
---|
309 | avgTrainRMSE = Math.Sqrt(sumTrainSE / nTrain);
|
---|
310 |
|
---|
311 | return new RegressionEnsembleModel(models);
|
---|
312 | }
|
---|
313 |
|
---|
314 | private struct SplineData {
|
---|
315 | public double a, b, c, d, x, y;
|
---|
316 | };
|
---|
317 |
|
---|
318 |
|
---|
319 | /*
|
---|
320 | * The procedure Quincunx, takes as arguments
|
---|
321 | the vectors u, v and w which are respectively the diagonal, the first supradiagonal
|
---|
322 | and the second supradiagonal of the banded matrix. The vector on
|
---|
323 | the LHS of the equation (80) is placed in q which contains the solution on the
|
---|
324 | completion of the procedure.
|
---|
325 | */
|
---|
326 | private void Quincunx(int n, MyArray<double> u, MyArray<double> v, MyArray<double> w, MyArray<double> q) {
|
---|
327 | // { factorisation}
|
---|
328 | u[-1] = 0;
|
---|
329 | u[0] = 0;
|
---|
330 | for (int j = 1; j <= n - 1; j++) {
|
---|
331 | u[j] = u[j] - u[j - 2] * Math.Pow(w[j - 2], 2) - u[j - 1] * Math.Pow(v[j - 1], 2);
|
---|
332 | v[j] = (v[j] - u[j - 1] * v[j - 1] * w[j - 1]) / u[j];
|
---|
333 | w[j] = w[j] / u[j];
|
---|
334 | }
|
---|
335 | // { forward substitution}
|
---|
336 | for (int j = 1; j <= n - 1; j++) {
|
---|
337 | q[j] = q[j] - v[j - 1] * q[j - 1] - w[j - 2] * q[j - 2];
|
---|
338 | }
|
---|
339 | for (int j = 1; j < n - 1; j++) {
|
---|
340 | q[j] = q[j] / u[j];
|
---|
341 | }
|
---|
342 | // { back substitution}
|
---|
343 | q[n + 1] = 0;
|
---|
344 | q[n] = 0;
|
---|
345 | for (int j = n - 1; j >= 1; j--) {
|
---|
346 | q[j] = q[j] - v[j] * q[j + 1] - w[j] * q[j + 2];
|
---|
347 | }
|
---|
348 | }
|
---|
349 |
|
---|
350 | public void CalculateSmoothingSplineReinsch(double[] x, double[] y, string[] inputVars) {
|
---|
351 | double s = x.Length + 1;
|
---|
352 | double stdTol = ((IValueParameter<DoubleValue>)Parameters["StdDev (noise)"]).Value.Value; // controls extent of smoothing
|
---|
353 |
|
---|
354 | var model = CalculateSmoothingSplineReinsch(x, y, inputVars, stdTol, s, Problem.ProblemData.TargetVariable);
|
---|
355 |
|
---|
356 | Results.Add(new Result("Solution", model.CreateRegressionSolution((IRegressionProblemData)Problem.ProblemData.Clone())));
|
---|
357 | }
|
---|
358 |
|
---|
359 |
|
---|
360 | public static IRegressionEnsembleModel CalculateSmoothingSplineReinsch(double[] x, double[] y, double tol, string targetVar, string[] inputVars,
|
---|
361 | out double avgTrainRMSE,
|
---|
362 | out double cvRMSE) {
|
---|
363 | int info;
|
---|
364 |
|
---|
365 | int folds = 10;
|
---|
366 | int foldSize = x.Length <= 30 ? 1 : x.Length / folds;
|
---|
367 | if (foldSize == 1) folds = x.Length;
|
---|
368 |
|
---|
369 | double[] x_loo = new double[(folds - 1) * foldSize];
|
---|
370 | double[] y_loo = new double[(folds - 1) * foldSize];
|
---|
371 |
|
---|
372 | var models = new List<IRegressionModel>();
|
---|
373 | var sumTrainSE = 0.0;
|
---|
374 | int nTrain = 0;
|
---|
375 | var sumTestSE = 0.0;
|
---|
376 | int nTest = 0;
|
---|
377 |
|
---|
378 |
|
---|
379 | for (int i = 0; i < folds; i++) {
|
---|
380 | if (i < folds - 1) {
|
---|
381 | Array.Copy(x, (i + 1) * foldSize, x_loo, i * foldSize, x.Length - ((i + 1) * foldSize) - 1);
|
---|
382 | Array.Copy(y, (i + 1) * foldSize, y_loo, i * foldSize, y.Length - ((i + 1) * foldSize) - 1);
|
---|
383 | }
|
---|
384 | var model = CalculateSmoothingSplineReinsch(x_loo, y_loo, inputVars, tol, ((folds - 1) * foldSize) - 1, targetVar);
|
---|
385 |
|
---|
386 | // training error
|
---|
387 | for(int j = 0;j<x_loo.Length;j++) {
|
---|
388 | var y_pred = model.GetEstimatedValue(x[j]);
|
---|
389 | double res = y[j] - y_pred;
|
---|
390 | sumTrainSE += res * res;
|
---|
391 | nTrain++;
|
---|
392 | }
|
---|
393 | // test
|
---|
394 | for (int j = i * foldSize; j < (i + 1) * foldSize; j++) {
|
---|
395 | var y_pred = model.GetEstimatedValue(x[j]);
|
---|
396 | double res = y[j] - y_pred;
|
---|
397 | sumTestSE += res * res;
|
---|
398 | nTest++;
|
---|
399 | }
|
---|
400 |
|
---|
401 | models.Add(model);
|
---|
402 |
|
---|
403 | if (i < folds - 1) {
|
---|
404 | // add current fold for next iteration
|
---|
405 | Array.Copy(x, i * foldSize, x_loo, i * foldSize, foldSize);
|
---|
406 | Array.Copy(y, i * foldSize, y_loo, i * foldSize, foldSize);
|
---|
407 | }
|
---|
408 | }
|
---|
409 |
|
---|
410 | cvRMSE = Math.Sqrt(sumTestSE / nTest);
|
---|
411 | avgTrainRMSE = Math.Sqrt(sumTrainSE / nTrain);
|
---|
412 |
|
---|
413 | return new RegressionEnsembleModel(models);
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | // automatically determines tolerance using cv, SLOW!
|
---|
418 | public static IRegressionModel CalculateSmoothingSplineReinsch(double[] x, double[] y, string[] inputVars, string targetVar,
|
---|
419 | out double optTolerance, out double cvRMSE) {
|
---|
420 | var maxTolerance = y.StandardDeviation();
|
---|
421 | var minTolerance = maxTolerance * 1E-6;
|
---|
422 | optTolerance = maxTolerance;
|
---|
423 | var tol = maxTolerance;
|
---|
424 | cvRMSE = double.PositiveInfinity;
|
---|
425 | IRegressionModel bestModel = new ConstantModel(y.Average(), targetVar);
|
---|
426 | while (tol > minTolerance) {
|
---|
427 | double curCVRMSE;
|
---|
428 | double avgTrainRmse;
|
---|
429 | var model = Splines.CalculateSmoothingSplineReinsch(
|
---|
430 | x, y, tol, targetVar, inputVars, out avgTrainRmse, out curCVRMSE);
|
---|
431 |
|
---|
432 | if (curCVRMSE < cvRMSE) {
|
---|
433 | cvRMSE = curCVRMSE;
|
---|
434 | optTolerance = tol;
|
---|
435 | bestModel = model;
|
---|
436 | }
|
---|
437 | tol *= 0.85;
|
---|
438 | }
|
---|
439 | return bestModel;
|
---|
440 | }
|
---|
441 |
|
---|
442 | public static ReinschSmoothingSplineModel CalculateSmoothingSplineReinsch(double[] xOrig, double[] yOrig, string[] inputVars, double stdTol, double s, string targetVar) {
|
---|
443 | var minX = xOrig.Min();
|
---|
444 | var maxX = xOrig.Max();
|
---|
445 | var range = maxX - minX;
|
---|
446 |
|
---|
447 | double[] w = Enumerable.Repeat(stdTol, xOrig.Length).ToArray();
|
---|
448 | SortAndBin((double[])xOrig.Clone(), (double[])yOrig.Clone(), w, out xOrig, out yOrig, out w, scaling: false);
|
---|
449 |
|
---|
450 | // See Smoothing by Spline Functions, Reinsch, 1967
|
---|
451 | // move x and y into an array indexed with 1..n to match indexing in Reinsch paper
|
---|
452 | int n = xOrig.Length;
|
---|
453 | var x = new MyArray<double>(1, xOrig);
|
---|
454 | var y = new MyArray<double>(1, yOrig);
|
---|
455 | var inv_dy = new MyArray<double>(1, w);
|
---|
456 |
|
---|
457 | int n1 = 1;
|
---|
458 | int n2 = n;
|
---|
459 |
|
---|
460 | // results
|
---|
461 | var a = new MyArray<double>(n1, n);
|
---|
462 | var b = new MyArray<double>(n1, n);
|
---|
463 | var c = new MyArray<double>(n1, n);
|
---|
464 | var d = new MyArray<double>(n1, n);
|
---|
465 |
|
---|
466 | // smooth
|
---|
467 | {
|
---|
468 | int i, m1, m2; double e, f, f2, g = 0.0, h, p;
|
---|
469 | MyArray<double>
|
---|
470 | r = new MyArray<double>(n1 - 1, n + 2),
|
---|
471 | r1 = new MyArray<double>(n1 - 1, n + 2),
|
---|
472 | r2 = new MyArray<double>(n1 - 1, n + 2),
|
---|
473 | t = new MyArray<double>(n1 - 1, n + 2),
|
---|
474 | t1 = new MyArray<double>(n1 - 1, n + 2),
|
---|
475 | u = new MyArray<double>(n1 - 1, n + 2),
|
---|
476 | v = new MyArray<double>(n1 - 1, n + 2);
|
---|
477 | m1 = n1 - 1;
|
---|
478 | m2 = n2 + 1;
|
---|
479 | r[m1] = r[n1] = r1[n2] = r2[n2] = r2[m2] =
|
---|
480 | u[m1] = u[n1] = u[n2] = u[m2] = p = 0.0;
|
---|
481 | m1 = n1 + 1;
|
---|
482 | m2 = n2 - 1;
|
---|
483 | h = x[m1] - x[n1]; f = (y[m1] - y[n1]) / h;
|
---|
484 | for (i = m1; i <= m2; i++) {
|
---|
485 | g = h; h = x[i + 1] - x[i];
|
---|
486 | e = f; f = (y[i + 1] - y[i]) / h;
|
---|
487 | a[i] = f - e; t[i] = 2 * (g + h) / 3; t1[i] = h / 3;
|
---|
488 | r2[i] = inv_dy[i - 1] / g; r[i] = inv_dy[i + 1] / h;
|
---|
489 | r1[i] = -inv_dy[i] / g - inv_dy[i] / h;
|
---|
490 | }
|
---|
491 | for (i = m1; i <= m2; i++) {
|
---|
492 | b[i] = r[i] * r[i] + r1[i] * r1[i] + r2[i] * r2[i];
|
---|
493 | c[i] = r[i] * r1[i + 1] + r1[i] * r2[i + 1];
|
---|
494 | d[i] = r[i] * r2[i + 2];
|
---|
495 | }
|
---|
496 | f2 = -s;
|
---|
497 | next:
|
---|
498 | for (i = m1; i <= m2; i++) {
|
---|
499 | r1[i - 1] = f * r[i - 1]; r2[i - 2] = g * r[i - 2];
|
---|
500 | r[i] = 1 / (p * b[i] + t[i] - f * r1[i - 1] - g * r2[i - 2]);
|
---|
501 | u[i] = a[i] - r1[i - 1] * u[i - 1] - r2[i - 2] * u[i - 2];
|
---|
502 | f = p * c[i] + t1[i] - h * r1[i - 1]; g = h; h = d[i] * p;
|
---|
503 | }
|
---|
504 | for (i = m2; i >= m1; i--) {
|
---|
505 | u[i] = r[i] * u[i] - r1[i] * u[i + 1] - r2[i] * u[i + 2];
|
---|
506 | }
|
---|
507 | e = h = 0;
|
---|
508 | for (i = n1; i <= m2; i++) {
|
---|
509 | g = h; h = (u[i + 1] - u[i]) / (x[i + 1] - x[i]);
|
---|
510 | v[i] = (h - g) * inv_dy[i] * inv_dy[i]; e = e + v[i] * (h - g);
|
---|
511 | }
|
---|
512 | g = v[n2] = -h * inv_dy[n2] * inv_dy[n2]; e = e - g * h;
|
---|
513 | g = f2; f2 = e * p * p;
|
---|
514 | if (f2 >= s || f2 <= g) goto fin;
|
---|
515 | f = 0; h = (v[m1] - v[n1]) / (x[m1] - x[n1]);
|
---|
516 | for (i = m1; i <= m2; i++) {
|
---|
517 | g = h; h = (v[i + 1] - v[i]) / (x[i + 1] - x[i]);
|
---|
518 | g = h - g - r1[i - 1] * r[i - 1] - r2[i - 2] * r[i - 2];
|
---|
519 | f = f + g * r[i] * g; r[i] = g;
|
---|
520 | }
|
---|
521 | h = e - p * f; if (h <= 0) goto fin;
|
---|
522 | p = p + (s - f2) / ((Math.Sqrt(s / e) + p) * h); goto next;
|
---|
523 |
|
---|
524 | fin:
|
---|
525 | for (i = n1; i <= n2; i++) {
|
---|
526 | a[i] = y[i] - p * v[i];
|
---|
527 | c[i] = u[i];
|
---|
528 | }
|
---|
529 | for (i = n1; i <= m2; i++) {
|
---|
530 | h = x[i + 1] - x[i];
|
---|
531 | d[i] = (c[i + 1] - c[i]) / (3 * h);
|
---|
532 | b[i] = (a[i + 1] - a[i]) / h - (h * d[i] + c[i]) * h;
|
---|
533 | }
|
---|
534 | }
|
---|
535 |
|
---|
536 | // extrapolate for xx > x[n2]
|
---|
537 | b[b.Length] = b[b.Length - 1];
|
---|
538 | d[1] = 0;
|
---|
539 |
|
---|
540 | return new ReinschSmoothingSplineModel(a, b, c, d, x, targetVar, inputVars);
|
---|
541 | }
|
---|
542 |
|
---|
543 | public static void SortAndBin(double[] x, double[] y, double[] w, out double[] x2, out double[] y2, out double[] w2, bool scaling = false) {
|
---|
544 | var sortedIdx = Enumerable.Range(0, x.Length).ToArray();
|
---|
545 | // sort by x
|
---|
546 | Array.Sort(x, sortedIdx);
|
---|
547 |
|
---|
548 | var xl = new List<double>();
|
---|
549 | var yl = new List<double>();
|
---|
550 | var wl = new List<double>();
|
---|
551 |
|
---|
552 | int n = x.Length;
|
---|
553 | var range = x[n - 1] - x[0];
|
---|
554 | var binSize = range / n / 10;
|
---|
555 | {
|
---|
556 | // binning
|
---|
557 | int i = 0;
|
---|
558 | while (i < n) {
|
---|
559 | int k = 0;
|
---|
560 | int j = i;
|
---|
561 | double sumX = 0.0;
|
---|
562 | double sumY = 0.0;
|
---|
563 | double sumW = 0.0;
|
---|
564 | while (j < n && x[j] - x[i] <= binSize) {
|
---|
565 | k++;
|
---|
566 | sumX += x[j];
|
---|
567 | sumY += y[sortedIdx[j]];
|
---|
568 | sumW += w[sortedIdx[j]];
|
---|
569 | j++;
|
---|
570 | }
|
---|
571 | var avgX = sumX / k;
|
---|
572 | if (scaling) avgX = (avgX - x[0]) / range;
|
---|
573 | xl.Add(avgX);
|
---|
574 | yl.Add(sumY / k);
|
---|
575 | wl.Add(sumW);
|
---|
576 | i += k;
|
---|
577 | }
|
---|
578 | }
|
---|
579 |
|
---|
580 | x2 = xl.ToArray();
|
---|
581 | y2 = yl.ToArray();
|
---|
582 | w2 = wl.ToArray();
|
---|
583 | }
|
---|
584 | }
|
---|
585 |
|
---|
586 |
|
---|
587 | // array with non-zero lower index
|
---|
588 | internal class MyArray<T> {
|
---|
589 | private T[] arr;
|
---|
590 | private int lowerBound;
|
---|
591 |
|
---|
592 | public int Length { get { return arr.Length; } }
|
---|
593 |
|
---|
594 | public T this[int key] {
|
---|
595 | get {
|
---|
596 | return arr[key - lowerBound];
|
---|
597 | }
|
---|
598 | set {
|
---|
599 | arr[key - lowerBound] = value;
|
---|
600 | }
|
---|
601 | }
|
---|
602 |
|
---|
603 | public MyArray(int lowerBound, int numElements) {
|
---|
604 | this.lowerBound = lowerBound;
|
---|
605 | arr = new T[numElements];
|
---|
606 | }
|
---|
607 | public MyArray(int lowerBound, T[] source) : this(lowerBound, source.Length) {
|
---|
608 | Array.Copy(source, arr, source.Length);
|
---|
609 | }
|
---|
610 |
|
---|
611 | public T[] ToArray() {
|
---|
612 | var res = new T[arr.Length];
|
---|
613 | Array.Copy(arr, res, res.Length);
|
---|
614 | return res;
|
---|
615 | }
|
---|
616 | }
|
---|
617 |
|
---|
618 |
|
---|
619 | // UNFINISHED
|
---|
620 | public class ReinschSmoothingSplineModel : NamedItem, IRegressionModel {
|
---|
621 | private MyArray<double> a;
|
---|
622 | private MyArray<double> b;
|
---|
623 | private MyArray<double> c;
|
---|
624 | private MyArray<double> d;
|
---|
625 | private MyArray<double> x;
|
---|
626 | private double offset;
|
---|
627 | private double scale;
|
---|
628 |
|
---|
629 | public string TargetVariable { get; set; }
|
---|
630 |
|
---|
631 | public IEnumerable<string> VariablesUsedForPrediction { get; private set; }
|
---|
632 |
|
---|
633 | public event EventHandler TargetVariableChanged;
|
---|
634 |
|
---|
635 | public ReinschSmoothingSplineModel(ReinschSmoothingSplineModel orig, Cloner cloner) : base(orig, cloner) {
|
---|
636 | this.TargetVariable = orig.TargetVariable;
|
---|
637 | this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
|
---|
638 | this.a = orig.a;
|
---|
639 | this.b = orig.b;
|
---|
640 | this.c = orig.c;
|
---|
641 | this.d = orig.d;
|
---|
642 | this.x = orig.x;
|
---|
643 | this.scale = orig.scale;
|
---|
644 | this.offset = orig.offset;
|
---|
645 | }
|
---|
646 | internal ReinschSmoothingSplineModel(
|
---|
647 | MyArray<double> a,
|
---|
648 | MyArray<double> b,
|
---|
649 | MyArray<double> c,
|
---|
650 | MyArray<double> d,
|
---|
651 | MyArray<double> x,
|
---|
652 | string targetVar, string[] inputs, double offset = 0, double scale = 1) : base("SplineModel", "SplineModel") {
|
---|
653 | this.a = a;
|
---|
654 | this.b = b;
|
---|
655 | this.c = c;
|
---|
656 | this.d = d;
|
---|
657 | this.x = x;
|
---|
658 | this.TargetVariable = targetVar;
|
---|
659 | this.VariablesUsedForPrediction = inputs;
|
---|
660 | this.scale = scale;
|
---|
661 | this.offset = offset;
|
---|
662 | }
|
---|
663 |
|
---|
664 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
665 | return new ReinschSmoothingSplineModel(this, cloner);
|
---|
666 | }
|
---|
667 |
|
---|
668 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
669 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
670 | }
|
---|
671 |
|
---|
672 | public double GetEstimatedValue(double xx) {
|
---|
673 | xx = (xx - offset) * scale;
|
---|
674 | int n = a.Length;
|
---|
675 | if (xx <= x[1]) {
|
---|
676 | double h = xx - x[1];
|
---|
677 | return a[1] + h * (b[1] + h * (c[1] + h * d[1]));
|
---|
678 | } else if (xx >= x[n]) {
|
---|
679 | double h = xx - x[n];
|
---|
680 | return a[n] + h * (b[n] + h * (c[n] + h * d[n]));
|
---|
681 | } else {
|
---|
682 | // binary search
|
---|
683 | int lower = 1;
|
---|
684 | int upper = n;
|
---|
685 | while (true) {
|
---|
686 | if (upper < lower) throw new InvalidProgramException();
|
---|
687 | int i = lower + (upper - lower) / 2;
|
---|
688 | if (x[i] <= xx && xx < x[i + 1]) {
|
---|
689 | double h = xx - x[i];
|
---|
690 | return a[i] + h * (b[i] + h * (c[i] + h * d[i]));
|
---|
691 | } else if (xx < x[i]) {
|
---|
692 | upper = i - 1;
|
---|
693 | } else {
|
---|
694 | lower = i + 1;
|
---|
695 | }
|
---|
696 | }
|
---|
697 | }
|
---|
698 | }
|
---|
699 |
|
---|
700 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
701 | int n = x.Length;
|
---|
702 | var product = dataset.GetDoubleValues(VariablesUsedForPrediction.First(), rows).ToArray();
|
---|
703 | foreach (var factor in VariablesUsedForPrediction.Skip(1)) {
|
---|
704 | product = product.Zip(dataset.GetDoubleValues(factor, rows), (pi, fi) => pi * fi).ToArray();
|
---|
705 | }
|
---|
706 | foreach (var xx in product) {
|
---|
707 | yield return GetEstimatedValue(xx);
|
---|
708 | }
|
---|
709 | }
|
---|
710 | }
|
---|
711 |
|
---|
712 | // UNFINISHED
|
---|
713 | public class Spline1dModel : NamedItem, IRegressionModel {
|
---|
714 | alglib.spline1dinterpolant interpolant;
|
---|
715 |
|
---|
716 | public string TargetVariable { get; set; }
|
---|
717 |
|
---|
718 | public IEnumerable<string> VariablesUsedForPrediction { get; private set; }
|
---|
719 |
|
---|
720 | public event EventHandler TargetVariableChanged;
|
---|
721 |
|
---|
722 | public Spline1dModel(Spline1dModel orig, Cloner cloner) : base(orig, cloner) {
|
---|
723 | this.TargetVariable = orig.TargetVariable;
|
---|
724 | this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
|
---|
725 |
|
---|
726 | this.interpolant = (alglib.spline1dinterpolant)orig.interpolant.make_copy();
|
---|
727 | }
|
---|
728 | public Spline1dModel(
|
---|
729 | alglib.spline1dinterpolant interpolant,
|
---|
730 | string targetVar, string[] inputs, double offset = 0, double scale = 1) : base("SplineModel", "SplineModel") {
|
---|
731 | this.interpolant = (alglib.spline1dinterpolant)interpolant.make_copy();
|
---|
732 | this.TargetVariable = targetVar;
|
---|
733 | this.VariablesUsedForPrediction = inputs;
|
---|
734 | }
|
---|
735 |
|
---|
736 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
737 | return new Spline1dModel(this, cloner);
|
---|
738 | }
|
---|
739 |
|
---|
740 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
741 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
742 | }
|
---|
743 |
|
---|
744 | public double GetEstimatedValue(double xx) {
|
---|
745 | return alglib.spline1dcalc(interpolant, xx);
|
---|
746 | }
|
---|
747 |
|
---|
748 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
749 | var product = dataset.GetDoubleValues(VariablesUsedForPrediction.First(), rows).ToArray();
|
---|
750 | foreach (var factor in VariablesUsedForPrediction.Skip(1)) {
|
---|
751 | product = product.Zip(dataset.GetDoubleValues(factor, rows), (pi, fi) => pi * fi).ToArray();
|
---|
752 | }
|
---|
753 | foreach (var xx in product) {
|
---|
754 | yield return GetEstimatedValue(xx);
|
---|
755 | }
|
---|
756 | }
|
---|
757 | }
|
---|
758 | }
|
---|