1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Concurrent;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using System.Threading.Tasks;
|
---|
28 | using HeuristicLab.Analysis;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
33 | using HeuristicLab.Optimization;
|
---|
34 | using HeuristicLab.Parameters;
|
---|
35 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis;
|
---|
37 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
38 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
39 |
|
---|
40 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
41 | // UNFINISHED
|
---|
42 | [Item("Generalized Additive Modelling", "GAM")]
|
---|
43 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 102)]
|
---|
44 | [StorableClass]
|
---|
45 | public sealed class GAM : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
46 |
|
---|
47 | private const string LambdaParameterName = "Lambda";
|
---|
48 | private const string MaxIterationsParameterName = "Max iterations";
|
---|
49 | private const string MaxInteractionsParameterName = "Max interactions";
|
---|
50 |
|
---|
51 | public IFixedValueParameter<DoubleValue> LambdaParameter {
|
---|
52 | get { return (IFixedValueParameter<DoubleValue>)Parameters[LambdaParameterName]; }
|
---|
53 | }
|
---|
54 | public IFixedValueParameter<IntValue> MaxIterationsParameter {
|
---|
55 | get { return (IFixedValueParameter<IntValue>)Parameters[MaxIterationsParameterName]; }
|
---|
56 | }
|
---|
57 | public IFixedValueParameter<IntValue> MaxInteractionsParameter {
|
---|
58 | get { return (IFixedValueParameter<IntValue>)Parameters[MaxInteractionsParameterName]; }
|
---|
59 | }
|
---|
60 |
|
---|
61 | public double Lambda {
|
---|
62 | get { return LambdaParameter.Value.Value; }
|
---|
63 | set { LambdaParameter.Value.Value = value; }
|
---|
64 | }
|
---|
65 | public int MaxIterations {
|
---|
66 | get { return MaxIterationsParameter.Value.Value; }
|
---|
67 | set { MaxIterationsParameter.Value.Value = value; }
|
---|
68 | }
|
---|
69 | public int MaxInteractions {
|
---|
70 | get { return MaxInteractionsParameter.Value.Value; }
|
---|
71 | set { MaxInteractionsParameter.Value.Value = value; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | [StorableConstructor]
|
---|
75 | private GAM(bool deserializing) : base(deserializing) { }
|
---|
76 | [StorableHook(HookType.AfterDeserialization)]
|
---|
77 | private void AfterDeserialization() {
|
---|
78 | }
|
---|
79 |
|
---|
80 | private GAM(GAM original, Cloner cloner)
|
---|
81 | : base(original, cloner) {
|
---|
82 | }
|
---|
83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
84 | return new GAM(this, cloner);
|
---|
85 | }
|
---|
86 |
|
---|
87 | public GAM()
|
---|
88 | : base() {
|
---|
89 | Problem = new RegressionProblem();
|
---|
90 | Parameters.Add(new FixedValueParameter<DoubleValue>(LambdaParameterName, "Regularization for smoothing splines", new DoubleValue(1.0)));
|
---|
91 | Parameters.Add(new FixedValueParameter<IntValue>(MaxIterationsParameterName, "", new IntValue(100)));
|
---|
92 | Parameters.Add(new FixedValueParameter<IntValue>(MaxInteractionsParameterName, "", new IntValue(1)));
|
---|
93 | }
|
---|
94 |
|
---|
95 |
|
---|
96 | protected override void Run(CancellationToken cancellationToken) {
|
---|
97 | double lambda = Lambda;
|
---|
98 | int maxIters = MaxIterations;
|
---|
99 | int maxInteractions = MaxInteractions;
|
---|
100 | if (maxInteractions < 1 || maxInteractions > 5) throw new ArgumentException("Max interactions is outside the valid range [1 .. 5]");
|
---|
101 |
|
---|
102 | // calculates a GAM model using a linear representation + independent non-linear functions of each variable
|
---|
103 | // using backfitting algorithm (see The Elements of Statistical Learning page 298)
|
---|
104 |
|
---|
105 | var problemData = Problem.ProblemData;
|
---|
106 | var y = problemData.TargetVariableTrainingValues.ToArray();
|
---|
107 | var avgY = y.Average();
|
---|
108 | var inputVars = Problem.ProblemData.AllowedInputVariables.ToArray();
|
---|
109 | var nTerms = 0; // inputVars.Length; // LR
|
---|
110 | for (int i = 1; i <= maxInteractions; i++) {
|
---|
111 | nTerms += inputVars.Combinations(i).Count();
|
---|
112 | }
|
---|
113 |
|
---|
114 | IRegressionModel[] f = new IRegressionModel[nTerms];
|
---|
115 | for (int i = 0; i < f.Length; i++) {
|
---|
116 | f[i] = new ConstantModel(0.0, problemData.TargetVariable);
|
---|
117 | }
|
---|
118 |
|
---|
119 | var rmseTable = new DataTable("RMSE");
|
---|
120 | var rmseRow = new DataRow("RMSE (train)");
|
---|
121 | var rmseRowTest = new DataRow("RMSE (test)");
|
---|
122 | rmseTable.Rows.Add(rmseRow);
|
---|
123 | rmseTable.Rows.Add(rmseRowTest);
|
---|
124 |
|
---|
125 | Results.Add(new Result("RMSE", rmseTable));
|
---|
126 | rmseRow.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TrainingIndices).StandardDeviation()); // -1 index to use all predictors
|
---|
127 | rmseRowTest.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TestIndices).StandardDeviation());
|
---|
128 |
|
---|
129 | // for analytics
|
---|
130 | double[] rss = new double[f.Length];
|
---|
131 | string[] terms = new string[f.Length];
|
---|
132 | Results.Add(new Result("RSS Values", typeof(DoubleMatrix)));
|
---|
133 |
|
---|
134 | var combinations = new List<string[]>();
|
---|
135 | for (int i = 1; i <= maxInteractions; i++)
|
---|
136 | combinations.AddRange(HeuristicLab.Common.EnumerableExtensions.Combinations(inputVars, i).Select(c => c.ToArray()));
|
---|
137 | // combinations.Add(new string[] { "X1", "X2" });
|
---|
138 | // combinations.Add(new string[] { "X3", "X4" });
|
---|
139 | // combinations.Add(new string[] { "X5", "X6" });
|
---|
140 | // combinations.Add(new string[] { "X1", "X7", "X9" });
|
---|
141 | // combinations.Add(new string[] { "X3", "X6", "X10" });
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 | // until convergence
|
---|
146 | int iters = 0;
|
---|
147 | var t = new double[y.Length];
|
---|
148 | while (iters++ < maxIters) {
|
---|
149 | int j = 0;
|
---|
150 | //foreach (var inputVar in inputVars) {
|
---|
151 | // var res = CalculateResiduals(problemData, f, j, avgY, problemData.TrainingIndices);
|
---|
152 | // rss[j] = res.Variance();
|
---|
153 | // terms[j] = inputVar;
|
---|
154 | // f[j] = RegressLR(problemData, inputVar, res);
|
---|
155 | // j++;
|
---|
156 | //}
|
---|
157 |
|
---|
158 |
|
---|
159 |
|
---|
160 | foreach (var element in combinations) {
|
---|
161 | var res = CalculateResiduals(problemData, f, j, avgY, problemData.TrainingIndices);
|
---|
162 | rss[j] = res.Variance();
|
---|
163 | terms[j] = string.Format("f({0})", string.Join(",", element));
|
---|
164 | f[j] = RegressSpline(problemData, element.ToArray(), res, lambda);
|
---|
165 | j++;
|
---|
166 | }
|
---|
167 |
|
---|
168 | rmseRow.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TrainingIndices).StandardDeviation()); // -1 index to use all predictors
|
---|
169 | rmseRowTest.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TestIndices).StandardDeviation());
|
---|
170 |
|
---|
171 | // calculate table with residual contributions of each term
|
---|
172 | var rssTable = new DoubleMatrix(rss.Length, 1, new string[] { "RSS" }, terms);
|
---|
173 | for (int i = 0; i < rss.Length; i++) rssTable[i, 0] = rss[i];
|
---|
174 | Results["RSS Values"].Value = rssTable;
|
---|
175 |
|
---|
176 | if (cancellationToken.IsCancellationRequested) break;
|
---|
177 | }
|
---|
178 |
|
---|
179 | var model = new RegressionEnsembleModel(f.Concat(new[] { new ConstantModel(avgY, problemData.TargetVariable) }));
|
---|
180 | model.AverageModelEstimates = false;
|
---|
181 | var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
182 | Results.Add(new Result("Ensemble solution", solution));
|
---|
183 | }
|
---|
184 |
|
---|
185 | private double[] CalculateResiduals(IRegressionProblemData problemData, IRegressionModel[] f, int j, double avgY, IEnumerable<int> rows) {
|
---|
186 | var y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
187 | double[] t = y.Select(yi => yi - avgY).ToArray();
|
---|
188 | // collect other predictions
|
---|
189 | for (int k = 0; k < f.Length; k++) {
|
---|
190 | if (k != j) {
|
---|
191 | var pred = f[k].GetEstimatedValues(problemData.Dataset, rows).ToArray();
|
---|
192 | // determine target for this smoother
|
---|
193 | for (int i = 0; i < t.Length; i++) {
|
---|
194 | t[i] -= pred[i];
|
---|
195 | }
|
---|
196 | }
|
---|
197 | }
|
---|
198 | return t;
|
---|
199 | }
|
---|
200 |
|
---|
201 | private IRegressionModel RegressLR(IRegressionProblemData problemData, string inputVar, double[] target) {
|
---|
202 | // Umständlich!
|
---|
203 | var ds = ((Dataset)problemData.Dataset).ToModifiable();
|
---|
204 | ds.ReplaceVariable(problemData.TargetVariable, target.Concat(Enumerable.Repeat(0.0, ds.Rows - target.Length)).ToList<double>());
|
---|
205 | var pd = new RegressionProblemData(ds, new string[] { inputVar }, problemData.TargetVariable);
|
---|
206 | pd.TrainingPartition.Start = problemData.TrainingPartition.Start;
|
---|
207 | pd.TrainingPartition.End = problemData.TrainingPartition.End;
|
---|
208 | pd.TestPartition.Start = problemData.TestPartition.Start;
|
---|
209 | pd.TestPartition.End = problemData.TestPartition.End;
|
---|
210 | double rmsError, cvRmsError;
|
---|
211 | return LinearRegression.CreateLinearRegressionSolution(pd, out rmsError, out cvRmsError).Model;
|
---|
212 | }
|
---|
213 |
|
---|
214 | // private IRegressionModel RegressSpline(IRegressionProblemData problemData, string inputVar, double[] target, double lambda) {
|
---|
215 | // if (problemData.Dataset.VariableHasType<double>(inputVar)) {
|
---|
216 | // // Umständlich!
|
---|
217 | // return Splines.CalculatePenalizedRegressionSpline(
|
---|
218 | // problemData.Dataset.GetDoubleValues(inputVar, problemData.TrainingIndices).ToArray(),
|
---|
219 | // (double[])target.Clone(), lambda,
|
---|
220 | // problemData.TargetVariable, new string[] { inputVar }
|
---|
221 | // );
|
---|
222 | // } else return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
223 | // }
|
---|
224 | private IRegressionModel RegressSpline(IRegressionProblemData problemData, string[] inputVars, double[] target, double lambda) {
|
---|
225 | if (inputVars.All(problemData.Dataset.VariableHasType<double>)) {
|
---|
226 | var product = problemData.Dataset.GetDoubleValues(inputVars.First(), problemData.TrainingIndices).ToArray();
|
---|
227 | for (int i = 1; i < inputVars.Length; i++) {
|
---|
228 | product = product.Zip(problemData.Dataset.GetDoubleValues(inputVars[i], problemData.TrainingIndices), (pi, vi) => pi * vi).ToArray();
|
---|
229 | }
|
---|
230 | // CubicSplineGCV.CubGcvReport report;
|
---|
231 | // return CubicSplineGCV.CalculateCubicSpline(
|
---|
232 | // product,
|
---|
233 | // (double[])target.Clone(),
|
---|
234 | // problemData.TargetVariable, inputVars, out report
|
---|
235 | // );
|
---|
236 |
|
---|
237 | double optTolerance; double cvRMSE;
|
---|
238 | // find tolerance
|
---|
239 | // var ensemble = Splines.CalculateSmoothingSplineReinsch(product, (double[])target.Clone(), inputVars, problemData.TargetVariable, out optTolerance, out cvRMSE);
|
---|
240 | // // train on whole data
|
---|
241 | // return Splines.CalculateSmoothingSplineReinsch(product, (double[])target.Clone(), inputVars, optTolerance, product.Length - 1, problemData.TargetVariable);
|
---|
242 |
|
---|
243 |
|
---|
244 | // find tolerance
|
---|
245 | //var bestLambda = double.NaN;
|
---|
246 | double bestCVRMSE = target.StandardDeviation();
|
---|
247 | double avgTrainRMSE = double.PositiveInfinity;
|
---|
248 | double[] bestPredictions = new double[target.Length]; // zero
|
---|
249 |
|
---|
250 |
|
---|
251 | //double[] bestSSE = target.Select(ti => ti*ti).ToArray(); // target - zero
|
---|
252 | //for (double curLambda = 6.0; curLambda >= -6.0; curLambda -= 1.0) {
|
---|
253 | // double[] predictions;
|
---|
254 | // var ensemble = Splines.CalculatePenalizedRegressionSpline(product, (double[])target.Clone(), curLambda, problemData.TargetVariable, inputVars, out avgTrainRMSE, out cvRMSE, out predictions);
|
---|
255 | // double[] sse = target.Zip(predictions, (t, p) => (t - p)*(t-p)).ToArray();
|
---|
256 | // // Console.Write("{0} {1} {2}", curLambda, avgTrainRMSE, cvRMSE);
|
---|
257 | // double bothTails = .0, leftTail = .0, rightTail = .0;
|
---|
258 | // alglib.stest.onesamplesigntest(bestSSE.Zip(sse, (a, b) => a-b).ToArray(), predictions.Length, 0.0, ref bothTails, ref leftTail, ref rightTail);
|
---|
259 | // if (bothTails < 0.1 && bestCVRMSE > cvRMSE) {
|
---|
260 | // Console.Write(" *");
|
---|
261 | // bestCVRMSE = cvRMSE;
|
---|
262 | // bestLambda = curLambda;
|
---|
263 | // bestSSE = sse;
|
---|
264 | // bestPredictions = predictions;
|
---|
265 | // }
|
---|
266 | // // Console.WriteLine();
|
---|
267 | //}
|
---|
268 | //if (double.IsNaN(bestLambda)) {
|
---|
269 | // return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
270 | //} else {
|
---|
271 | // train on whole data
|
---|
272 |
|
---|
273 |
|
---|
274 | // return Splines.CalculatePenalizedRegressionSpline(product, (double[])target.Clone(), lambda, problemData.TargetVariable, inputVars, out avgTrainRMSE, out cvRMSE, out bestPredictions);
|
---|
275 | SBART.SBART_Report rep;
|
---|
276 | var model = SBART.CalculateSBART(product, (double[])target.Clone(), problemData.TargetVariable, inputVars, (float)lambda, out rep);
|
---|
277 | Console.WriteLine("{0} {1:N5} {2:N5} {3:N5} {4:N5}", string.Join(",", inputVars), rep.gcv, rep.leverage.Sum(), product.StandardDeviation(), target.StandardDeviation());
|
---|
278 | return model;
|
---|
279 | // }
|
---|
280 |
|
---|
281 | } else return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
282 | }
|
---|
283 |
|
---|
284 | private IRegressionModel RegressRF(IRegressionProblemData problemData, string inputVar, double[] target, double lambda) {
|
---|
285 | if (problemData.Dataset.VariableHasType<double>(inputVar)) {
|
---|
286 | // Umständlich!
|
---|
287 | var ds = ((Dataset)problemData.Dataset).ToModifiable();
|
---|
288 | ds.ReplaceVariable(problemData.TargetVariable, target.Concat(Enumerable.Repeat(0.0, ds.Rows - target.Length)).ToList<double>());
|
---|
289 | var pd = new RegressionProblemData(ds, new string[] { inputVar }, problemData.TargetVariable);
|
---|
290 | pd.TrainingPartition.Start = problemData.TrainingPartition.Start;
|
---|
291 | pd.TrainingPartition.End = problemData.TrainingPartition.End;
|
---|
292 | pd.TestPartition.Start = problemData.TestPartition.Start;
|
---|
293 | pd.TestPartition.End = problemData.TestPartition.End;
|
---|
294 | double rmsError, oobRmsError;
|
---|
295 | double avgRelError, oobAvgRelError;
|
---|
296 | return RandomForestRegression.CreateRandomForestRegressionModel(pd, 100, 0.5, 0.5, 1234, out rmsError, out avgRelError, out oobRmsError, out oobAvgRelError);
|
---|
297 | } else return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 |
|
---|
302 | // UNFINISHED
|
---|
303 | public class RBFModel : NamedItem, IRegressionModel {
|
---|
304 | private alglib.rbfmodel model;
|
---|
305 |
|
---|
306 | public string TargetVariable { get; set; }
|
---|
307 |
|
---|
308 | public IEnumerable<string> VariablesUsedForPrediction { get; private set; }
|
---|
309 | private ITransformation<double>[] scaling;
|
---|
310 |
|
---|
311 | public event EventHandler TargetVariableChanged;
|
---|
312 |
|
---|
313 | public RBFModel(RBFModel orig, Cloner cloner) : base(orig, cloner) {
|
---|
314 | this.TargetVariable = orig.TargetVariable;
|
---|
315 | this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
|
---|
316 | this.model = (alglib.rbfmodel)orig.model.make_copy();
|
---|
317 | this.scaling = orig.scaling.Select(s => cloner.Clone(s)).ToArray();
|
---|
318 | }
|
---|
319 | public RBFModel(alglib.rbfmodel model, string targetVar, string[] inputs, IEnumerable<ITransformation<double>> scaling) : base("RBFModel", "RBFModel") {
|
---|
320 | this.model = model;
|
---|
321 | this.TargetVariable = targetVar;
|
---|
322 | this.VariablesUsedForPrediction = inputs;
|
---|
323 | this.scaling = scaling.ToArray();
|
---|
324 | }
|
---|
325 |
|
---|
326 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
327 | return new RBFModel(this, cloner);
|
---|
328 | }
|
---|
329 |
|
---|
330 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
331 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
332 | }
|
---|
333 |
|
---|
334 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
335 | double[] x = new double[VariablesUsedForPrediction.Count()];
|
---|
336 | double[] y;
|
---|
337 | foreach (var r in rows) {
|
---|
338 | int c = 0;
|
---|
339 | foreach (var v in VariablesUsedForPrediction) {
|
---|
340 | x[c] = scaling[c].Apply(dataset.GetDoubleValue(v, r).ToEnumerable()).First(); // OUCH!
|
---|
341 | c++;
|
---|
342 | }
|
---|
343 | alglib.rbfcalc(model, x, out y);
|
---|
344 | yield return y[0];
|
---|
345 | }
|
---|
346 | }
|
---|
347 | }
|
---|
348 | }
|
---|