[15364] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Threading;
|
---|
| 26 | using HeuristicLab.Analysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
| 36 | // UNFINISHED
|
---|
| 37 | [Item("Generalized Additive Modelling", "GAM")]
|
---|
| 38 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 102)]
|
---|
| 39 | [StorableClass]
|
---|
| 40 | public sealed class GAM : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
[15436] | 41 |
|
---|
| 42 | private const string LambdaParameterName = "Lambda";
|
---|
| 43 | private const string MaxIterationsParameterName = "Max iterations";
|
---|
| 44 | private const string MaxInteractionsParameterName = "Max interactions";
|
---|
| 45 |
|
---|
| 46 | public IFixedValueParameter<DoubleValue> LambdaParameter {
|
---|
| 47 | get { return (IFixedValueParameter<DoubleValue>)Parameters[LambdaParameterName]; }
|
---|
| 48 | }
|
---|
| 49 | public IFixedValueParameter<IntValue> MaxIterationsParameter {
|
---|
| 50 | get { return (IFixedValueParameter<IntValue>)Parameters[MaxIterationsParameterName]; }
|
---|
| 51 | }
|
---|
| 52 | public IFixedValueParameter<IntValue> MaxInteractionsParameter {
|
---|
| 53 | get { return (IFixedValueParameter<IntValue>)Parameters[MaxInteractionsParameterName]; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public double Lambda {
|
---|
| 57 | get { return LambdaParameter.Value.Value; }
|
---|
| 58 | set { LambdaParameter.Value.Value = value; }
|
---|
| 59 | }
|
---|
| 60 | public int MaxIterations {
|
---|
| 61 | get { return MaxIterationsParameter.Value.Value; }
|
---|
| 62 | set { MaxIterationsParameter.Value.Value = value; }
|
---|
| 63 | }
|
---|
| 64 | public int MaxInteractions {
|
---|
| 65 | get { return MaxInteractionsParameter.Value.Value; }
|
---|
| 66 | set { MaxInteractionsParameter.Value.Value = value; }
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[15364] | 69 | [StorableConstructor]
|
---|
| 70 | private GAM(bool deserializing) : base(deserializing) { }
|
---|
| 71 | [StorableHook(HookType.AfterDeserialization)]
|
---|
[15436] | 72 | private void AfterDeserialization() {
|
---|
[15364] | 73 | }
|
---|
| 74 |
|
---|
| 75 | private GAM(GAM original, Cloner cloner)
|
---|
| 76 | : base(original, cloner) {
|
---|
| 77 | }
|
---|
| 78 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 79 | return new GAM(this, cloner);
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | public GAM()
|
---|
| 83 | : base() {
|
---|
| 84 | Problem = new RegressionProblem();
|
---|
[15436] | 85 | Parameters.Add(new FixedValueParameter<DoubleValue>(LambdaParameterName, "Regularization for smoothing splines", new DoubleValue(1.0)));
|
---|
| 86 | Parameters.Add(new FixedValueParameter<IntValue>(MaxIterationsParameterName, "", new IntValue(100)));
|
---|
| 87 | Parameters.Add(new FixedValueParameter<IntValue>(MaxInteractionsParameterName, "", new IntValue(1)));
|
---|
| 88 | }
|
---|
[15364] | 89 |
|
---|
[15436] | 90 |
|
---|
[15364] | 91 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[15436] | 92 | double lambda = Lambda;
|
---|
[15457] | 93 | int maxIters = MaxIterations;
|
---|
[15436] | 94 | int maxInteractions = MaxInteractions;
|
---|
[15433] | 95 | if (maxInteractions < 1 || maxInteractions > 5) throw new ArgumentException("Max interactions is outside the valid range [1 .. 5]");
|
---|
[15364] | 96 |
|
---|
| 97 | // calculates a GAM model using a linear representation + independent non-linear functions of each variable
|
---|
| 98 | // using backfitting algorithm (see The Elements of Statistical Learning page 298)
|
---|
| 99 |
|
---|
| 100 | var problemData = Problem.ProblemData;
|
---|
| 101 | var y = problemData.TargetVariableTrainingValues.ToArray();
|
---|
| 102 | var avgY = y.Average();
|
---|
| 103 | var inputVars = Problem.ProblemData.AllowedInputVariables.ToArray();
|
---|
[15449] | 104 | var nTerms = 0; // inputVars.Length; // LR
|
---|
[15436] | 105 | for (int i = 1; i <= maxInteractions; i++) {
|
---|
[15433] | 106 | nTerms += inputVars.Combinations(i).Count();
|
---|
| 107 | }
|
---|
[15450] | 108 |
|
---|
[15436] | 109 | IRegressionModel[] f = new IRegressionModel[nTerms];
|
---|
| 110 | for (int i = 0; i < f.Length; i++) {
|
---|
[15364] | 111 | f[i] = new ConstantModel(0.0, problemData.TargetVariable);
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | var rmseTable = new DataTable("RMSE");
|
---|
| 115 | var rmseRow = new DataRow("RMSE (train)");
|
---|
| 116 | var rmseRowTest = new DataRow("RMSE (test)");
|
---|
| 117 | rmseTable.Rows.Add(rmseRow);
|
---|
| 118 | rmseTable.Rows.Add(rmseRowTest);
|
---|
| 119 |
|
---|
| 120 | Results.Add(new Result("RMSE", rmseTable));
|
---|
| 121 | rmseRow.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TrainingIndices).StandardDeviation()); // -1 index to use all predictors
|
---|
[15433] | 122 | rmseRowTest.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TestIndices).StandardDeviation());
|
---|
[15364] | 123 |
|
---|
[15433] | 124 | // for analytics
|
---|
| 125 | double[] rss = new double[f.Length];
|
---|
| 126 | string[] terms = new string[f.Length];
|
---|
| 127 | Results.Add(new Result("RSS Values", typeof(DoubleMatrix)));
|
---|
| 128 |
|
---|
[15450] | 129 | var combinations = new List<string[]>();
|
---|
[15457] | 130 | for (int i = 1; i <= maxInteractions; i++)
|
---|
[15450] | 131 | combinations.AddRange(HeuristicLab.Common.EnumerableExtensions.Combinations(inputVars, i).Select(c => c.ToArray()));
|
---|
| 132 | // combinations.Add(new string[] { "X1", "X2" });
|
---|
| 133 | // combinations.Add(new string[] { "X3", "X4" });
|
---|
| 134 | // combinations.Add(new string[] { "X5", "X6" });
|
---|
| 135 | // combinations.Add(new string[] { "X1", "X7", "X9" });
|
---|
| 136 | // combinations.Add(new string[] { "X3", "X6", "X10" });
|
---|
| 137 |
|
---|
| 138 |
|
---|
| 139 |
|
---|
[15364] | 140 | // until convergence
|
---|
| 141 | int iters = 0;
|
---|
| 142 | var t = new double[y.Length];
|
---|
| 143 | while (iters++ < maxIters) {
|
---|
| 144 | int j = 0;
|
---|
[15449] | 145 | //foreach (var inputVar in inputVars) {
|
---|
| 146 | // var res = CalculateResiduals(problemData, f, j, avgY, problemData.TrainingIndices);
|
---|
| 147 | // rss[j] = res.Variance();
|
---|
| 148 | // terms[j] = inputVar;
|
---|
| 149 | // f[j] = RegressLR(problemData, inputVar, res);
|
---|
| 150 | // j++;
|
---|
| 151 | //}
|
---|
[15433] | 152 |
|
---|
| 153 |
|
---|
[15450] | 154 |
|
---|
| 155 | foreach (var element in combinations) {
|
---|
| 156 | var res = CalculateResiduals(problemData, f, j, avgY, problemData.TrainingIndices);
|
---|
| 157 | rss[j] = res.Variance();
|
---|
| 158 | terms[j] = string.Format("f({0})", string.Join(",", element));
|
---|
| 159 | f[j] = RegressSpline(problemData, element.ToArray(), res, lambda);
|
---|
| 160 | j++;
|
---|
[15364] | 161 | }
|
---|
| 162 |
|
---|
| 163 | rmseRow.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TrainingIndices).StandardDeviation()); // -1 index to use all predictors
|
---|
[15365] | 164 | rmseRowTest.Values.Add(CalculateResiduals(problemData, f, -1, avgY, problemData.TestIndices).StandardDeviation());
|
---|
| 165 |
|
---|
[15433] | 166 | // calculate table with residual contributions of each term
|
---|
| 167 | var rssTable = new DoubleMatrix(rss.Length, 1, new string[] { "RSS" }, terms);
|
---|
| 168 | for (int i = 0; i < rss.Length; i++) rssTable[i, 0] = rss[i];
|
---|
| 169 | Results["RSS Values"].Value = rssTable;
|
---|
| 170 |
|
---|
[15365] | 171 | if (cancellationToken.IsCancellationRequested) break;
|
---|
[15364] | 172 | }
|
---|
| 173 |
|
---|
| 174 | var model = new RegressionEnsembleModel(f.Concat(new[] { new ConstantModel(avgY, problemData.TargetVariable) }));
|
---|
| 175 | model.AverageModelEstimates = false;
|
---|
[15436] | 176 | var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
| 177 | Results.Add(new Result("Ensemble solution", solution));
|
---|
[15364] | 178 | }
|
---|
| 179 |
|
---|
| 180 | private double[] CalculateResiduals(IRegressionProblemData problemData, IRegressionModel[] f, int j, double avgY, IEnumerable<int> rows) {
|
---|
| 181 | var y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 182 | double[] t = y.Select(yi => yi - avgY).ToArray();
|
---|
| 183 | // collect other predictions
|
---|
| 184 | for (int k = 0; k < f.Length; k++) {
|
---|
| 185 | if (k != j) {
|
---|
| 186 | var pred = f[k].GetEstimatedValues(problemData.Dataset, rows).ToArray();
|
---|
| 187 | // determine target for this smoother
|
---|
| 188 | for (int i = 0; i < t.Length; i++) {
|
---|
| 189 | t[i] -= pred[i];
|
---|
| 190 | }
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 | return t;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | private IRegressionModel RegressLR(IRegressionProblemData problemData, string inputVar, double[] target) {
|
---|
| 197 | // Umständlich!
|
---|
[15365] | 198 | var ds = ((Dataset)problemData.Dataset).ToModifiable();
|
---|
| 199 | ds.ReplaceVariable(problemData.TargetVariable, target.Concat(Enumerable.Repeat(0.0, ds.Rows - target.Length)).ToList<double>());
|
---|
| 200 | var pd = new RegressionProblemData(ds, new string[] { inputVar }, problemData.TargetVariable);
|
---|
| 201 | pd.TrainingPartition.Start = problemData.TrainingPartition.Start;
|
---|
| 202 | pd.TrainingPartition.End = problemData.TrainingPartition.End;
|
---|
| 203 | pd.TestPartition.Start = problemData.TestPartition.Start;
|
---|
| 204 | pd.TestPartition.End = problemData.TestPartition.End;
|
---|
[15364] | 205 | double rmsError, cvRmsError;
|
---|
| 206 | return LinearRegression.CreateLinearRegressionSolution(pd, out rmsError, out cvRmsError).Model;
|
---|
| 207 | }
|
---|
| 208 |
|
---|
[15449] | 209 | // private IRegressionModel RegressSpline(IRegressionProblemData problemData, string inputVar, double[] target, double lambda) {
|
---|
| 210 | // if (problemData.Dataset.VariableHasType<double>(inputVar)) {
|
---|
| 211 | // // Umständlich!
|
---|
| 212 | // return Splines.CalculatePenalizedRegressionSpline(
|
---|
| 213 | // problemData.Dataset.GetDoubleValues(inputVar, problemData.TrainingIndices).ToArray(),
|
---|
| 214 | // (double[])target.Clone(), lambda,
|
---|
| 215 | // problemData.TargetVariable, new string[] { inputVar }
|
---|
| 216 | // );
|
---|
| 217 | // } else return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
| 218 | // }
|
---|
[15433] | 219 | private IRegressionModel RegressSpline(IRegressionProblemData problemData, string[] inputVars, double[] target, double lambda) {
|
---|
| 220 | if (inputVars.All(problemData.Dataset.VariableHasType<double>)) {
|
---|
| 221 | var product = problemData.Dataset.GetDoubleValues(inputVars.First(), problemData.TrainingIndices).ToArray();
|
---|
[15436] | 222 | for (int i = 1; i < inputVars.Length; i++) {
|
---|
[15433] | 223 | product = product.Zip(problemData.Dataset.GetDoubleValues(inputVars[i], problemData.TrainingIndices), (pi, vi) => pi * vi).ToArray();
|
---|
| 224 | }
|
---|
[15469] | 225 | // CubicSplineGCV.CubGcvReport report;
|
---|
| 226 | // return CubicSplineGCV.CalculateCubicSpline(
|
---|
| 227 | // product,
|
---|
| 228 | // (double[])target.Clone(),
|
---|
| 229 | // problemData.TargetVariable, inputVars, out report
|
---|
| 230 | // );
|
---|
| 231 | //
|
---|
| 232 | // double optTolerance; double cvRMSE;
|
---|
[15450] | 233 | // find tolerance
|
---|
| 234 | // var ensemble = Splines.CalculateSmoothingSplineReinsch(product, (double[])target.Clone(), inputVars, problemData.TargetVariable, out optTolerance, out cvRMSE);
|
---|
| 235 | // // train on whole data
|
---|
| 236 | // return Splines.CalculateSmoothingSplineReinsch(product, (double[])target.Clone(), inputVars, optTolerance, product.Length - 1, problemData.TargetVariable);
|
---|
| 237 |
|
---|
| 238 |
|
---|
| 239 | // find tolerance
|
---|
[15457] | 240 | //var bestLambda = double.NaN;
|
---|
[15469] | 241 | // double bestCVRMSE = target.StandardDeviation();
|
---|
| 242 | // double avgTrainRMSE = double.PositiveInfinity;
|
---|
| 243 | // double[] bestPredictions = new double[target.Length]; // zero
|
---|
[15457] | 244 |
|
---|
| 245 |
|
---|
| 246 | //double[] bestSSE = target.Select(ti => ti*ti).ToArray(); // target - zero
|
---|
| 247 | //for (double curLambda = 6.0; curLambda >= -6.0; curLambda -= 1.0) {
|
---|
| 248 | // double[] predictions;
|
---|
| 249 | // var ensemble = Splines.CalculatePenalizedRegressionSpline(product, (double[])target.Clone(), curLambda, problemData.TargetVariable, inputVars, out avgTrainRMSE, out cvRMSE, out predictions);
|
---|
| 250 | // double[] sse = target.Zip(predictions, (t, p) => (t - p)*(t-p)).ToArray();
|
---|
| 251 | // // Console.Write("{0} {1} {2}", curLambda, avgTrainRMSE, cvRMSE);
|
---|
| 252 | // double bothTails = .0, leftTail = .0, rightTail = .0;
|
---|
| 253 | // alglib.stest.onesamplesigntest(bestSSE.Zip(sse, (a, b) => a-b).ToArray(), predictions.Length, 0.0, ref bothTails, ref leftTail, ref rightTail);
|
---|
| 254 | // if (bothTails < 0.1 && bestCVRMSE > cvRMSE) {
|
---|
| 255 | // Console.Write(" *");
|
---|
| 256 | // bestCVRMSE = cvRMSE;
|
---|
| 257 | // bestLambda = curLambda;
|
---|
| 258 | // bestSSE = sse;
|
---|
| 259 | // bestPredictions = predictions;
|
---|
| 260 | // }
|
---|
| 261 | // // Console.WriteLine();
|
---|
| 262 | //}
|
---|
| 263 | //if (double.IsNaN(bestLambda)) {
|
---|
| 264 | // return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
| 265 | //} else {
|
---|
[15450] | 266 | // train on whole data
|
---|
| 267 |
|
---|
[15457] | 268 |
|
---|
| 269 | // return Splines.CalculatePenalizedRegressionSpline(product, (double[])target.Clone(), lambda, problemData.TargetVariable, inputVars, out avgTrainRMSE, out cvRMSE, out bestPredictions);
|
---|
| 270 | SBART.SBART_Report rep;
|
---|
[15469] | 271 | var w = product.Select(_ => 1.0).ToArray();
|
---|
| 272 | var model = SBART.CalculateSBART(product, (double[])target.Clone(), w, 10, problemData.TargetVariable, inputVars, out rep);
|
---|
[15457] | 273 | Console.WriteLine("{0} {1:N5} {2:N5} {3:N5} {4:N5}", string.Join(",", inputVars), rep.gcv, rep.leverage.Sum(), product.StandardDeviation(), target.StandardDeviation());
|
---|
| 274 | return model;
|
---|
| 275 | // }
|
---|
| 276 |
|
---|
[15433] | 277 | } else return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
| 278 | }
|
---|
| 279 |
|
---|
[15365] | 280 | private IRegressionModel RegressRF(IRegressionProblemData problemData, string inputVar, double[] target, double lambda) {
|
---|
| 281 | if (problemData.Dataset.VariableHasType<double>(inputVar)) {
|
---|
| 282 | // Umständlich!
|
---|
| 283 | var ds = ((Dataset)problemData.Dataset).ToModifiable();
|
---|
| 284 | ds.ReplaceVariable(problemData.TargetVariable, target.Concat(Enumerable.Repeat(0.0, ds.Rows - target.Length)).ToList<double>());
|
---|
| 285 | var pd = new RegressionProblemData(ds, new string[] { inputVar }, problemData.TargetVariable);
|
---|
| 286 | pd.TrainingPartition.Start = problemData.TrainingPartition.Start;
|
---|
| 287 | pd.TrainingPartition.End = problemData.TrainingPartition.End;
|
---|
| 288 | pd.TestPartition.Start = problemData.TestPartition.Start;
|
---|
| 289 | pd.TestPartition.End = problemData.TestPartition.End;
|
---|
| 290 | double rmsError, oobRmsError;
|
---|
[15436] | 291 | double avgRelError, oobAvgRelError;
|
---|
[15365] | 292 | return RandomForestRegression.CreateRandomForestRegressionModel(pd, 100, 0.5, 0.5, 1234, out rmsError, out avgRelError, out oobRmsError, out oobAvgRelError);
|
---|
| 293 | } else return new ConstantModel(target.Average(), problemData.TargetVariable);
|
---|
| 294 | }
|
---|
[15364] | 295 | }
|
---|
| 296 |
|
---|
| 297 |
|
---|
| 298 | // UNFINISHED
|
---|
| 299 | public class RBFModel : NamedItem, IRegressionModel {
|
---|
| 300 | private alglib.rbfmodel model;
|
---|
| 301 |
|
---|
| 302 | public string TargetVariable { get; set; }
|
---|
| 303 |
|
---|
| 304 | public IEnumerable<string> VariablesUsedForPrediction { get; private set; }
|
---|
| 305 | private ITransformation<double>[] scaling;
|
---|
| 306 |
|
---|
| 307 | public event EventHandler TargetVariableChanged;
|
---|
| 308 |
|
---|
| 309 | public RBFModel(RBFModel orig, Cloner cloner) : base(orig, cloner) {
|
---|
| 310 | this.TargetVariable = orig.TargetVariable;
|
---|
| 311 | this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
|
---|
| 312 | this.model = (alglib.rbfmodel)orig.model.make_copy();
|
---|
| 313 | this.scaling = orig.scaling.Select(s => cloner.Clone(s)).ToArray();
|
---|
| 314 | }
|
---|
| 315 | public RBFModel(alglib.rbfmodel model, string targetVar, string[] inputs, IEnumerable<ITransformation<double>> scaling) : base("RBFModel", "RBFModel") {
|
---|
| 316 | this.model = model;
|
---|
| 317 | this.TargetVariable = targetVar;
|
---|
| 318 | this.VariablesUsedForPrediction = inputs;
|
---|
| 319 | this.scaling = scaling.ToArray();
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 323 | return new RBFModel(this, cloner);
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 327 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
| 328 | }
|
---|
| 329 |
|
---|
| 330 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
| 331 | double[] x = new double[VariablesUsedForPrediction.Count()];
|
---|
| 332 | double[] y;
|
---|
| 333 | foreach (var r in rows) {
|
---|
| 334 | int c = 0;
|
---|
| 335 | foreach (var v in VariablesUsedForPrediction) {
|
---|
| 336 | x[c] = scaling[c].Apply(dataset.GetDoubleValue(v, r).ToEnumerable()).First(); // OUCH!
|
---|
| 337 | c++;
|
---|
| 338 | }
|
---|
| 339 | alglib.rbfcalc(model, x, out y);
|
---|
| 340 | yield return y[0];
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 | }
|
---|
| 344 | }
|
---|