[14998] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Threading;
|
---|
| 26 | using HeuristicLab.Analysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
|
---|
| 36 | /// <summary>
|
---|
| 37 | /// Forward selection meta-algorithm.
|
---|
| 38 | /// </summary>
|
---|
| 39 | [Item("Forward Selection", "Meta-algorithm that performs feature selection for a given base algorithm using greedy forward selection.")]
|
---|
| 40 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 999)]
|
---|
| 41 | [StorableClass]
|
---|
| 42 | public sealed class ForwardsSelectionAlgorithm : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
| 43 | public IFixedValueParameter<IntValue> MaximumInputsParameter {
|
---|
| 44 | get { return (IFixedValueParameter<IntValue>)Parameters["Maximum Inputs"]; }
|
---|
| 45 | }
|
---|
| 46 | public int MaximumInputs {
|
---|
| 47 | get { return MaximumInputsParameter.Value.Value; }
|
---|
| 48 | set { MaximumInputsParameter.Value.Value = value; }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public IValueParameter<FixedDataAnalysisAlgorithm<IRegressionProblem>> AlgorithmParameter {
|
---|
| 52 | get { return (IValueParameter<FixedDataAnalysisAlgorithm<IRegressionProblem>>)Parameters["Algorithm"]; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public FixedDataAnalysisAlgorithm<IRegressionProblem> Algorithm {
|
---|
| 56 | get { return AlgorithmParameter.Value; }
|
---|
| 57 | set { AlgorithmParameter.Value = value; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 |
|
---|
| 61 | [StorableConstructor]
|
---|
| 62 | private ForwardsSelectionAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
| 63 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 64 | private void AfterDeserialization() {
|
---|
| 65 | RegisterEventHandlers();
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | private ForwardsSelectionAlgorithm(ForwardsSelectionAlgorithm original, Cloner cloner)
|
---|
| 69 | : base(original, cloner) {
|
---|
| 70 | RegisterEventHandlers();
|
---|
| 71 | }
|
---|
| 72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 73 | return new ForwardsSelectionAlgorithm(this, cloner);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public ForwardsSelectionAlgorithm()
|
---|
| 77 | : base() {
|
---|
| 78 | Parameters.Add(new FixedValueParameter<IntValue>("Maximum Inputs", "The maximum number of input variables used in the models.", new IntValue(1)));
|
---|
| 79 | Parameters.Add(new ValueParameter<FixedDataAnalysisAlgorithm<IRegressionProblem>>("Algorithm", "The base algorithm for modeling", new LinearRegression()));
|
---|
| 80 |
|
---|
| 81 | Problem = new RegressionProblem();
|
---|
| 82 | RegisterEventHandlers();
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | private void RegisterEventHandlers() {
|
---|
| 86 | Problem.ProblemDataChanged += (o, e) => { MaximumInputs = Problem.ProblemData.InputVariables.CheckedItems
|
---|
| 87 | .Select(t => t.Value)
|
---|
| 88 | .Where(v => Problem.ProblemData.Dataset.VariableHasType<double>(v.Value))
|
---|
| 89 | .Count();
|
---|
| 90 | };
|
---|
| 91 | }
|
---|
| 92 | protected override void OnProblemChanged() {
|
---|
| 93 | base.OnProblemChanged();
|
---|
| 94 | MaximumInputs = Problem.ProblemData.InputVariables.CheckedItems
|
---|
| 95 | .Select(t => t.Value)
|
---|
| 96 | .Where(v => Problem.ProblemData.Dataset.VariableHasType<double>(v.Value))
|
---|
| 97 | .Count();
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 101 | InitResults();
|
---|
| 102 | var problemClone = (IRegressionProblem)Problem.Clone();
|
---|
| 103 | var problemDataClone = (IRegressionProblemData)problemClone.ProblemData;
|
---|
| 104 | var allowedInputVariables = problemDataClone.InputVariables.CheckedItems.Select(t=>t.Value)
|
---|
| 105 | .Where(v => problemDataClone.Dataset.VariableHasType<double>(v.Value))
|
---|
| 106 | .ToList();
|
---|
| 107 | foreach (var variable in problemDataClone.InputVariables)
|
---|
| 108 | problemDataClone.InputVariables.SetItemCheckedState(variable, false);
|
---|
| 109 |
|
---|
| 110 | var alg = Algorithm;
|
---|
| 111 | alg.Problem = problemClone;
|
---|
| 112 |
|
---|
| 113 | for (int inputs = 1; inputs <= MaximumInputs; inputs++) {
|
---|
| 114 | var bestRMSE = double.MaxValue;
|
---|
| 115 | IRegressionSolution bestSolution = null;
|
---|
| 116 | StringValue bestInput = null;
|
---|
| 117 | foreach (var inputVar in allowedInputVariables) {
|
---|
| 118 | if (cancellationToken.IsCancellationRequested) {
|
---|
| 119 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | problemDataClone.InputVariables.SetItemCheckedState(inputVar, true);
|
---|
| 123 | var solution = RunAlg(alg);
|
---|
| 124 | if (solution != null && solution.TrainingRootMeanSquaredError < bestRMSE) {
|
---|
| 125 | bestRMSE = solution.TrainingRootMeanSquaredError;
|
---|
| 126 | bestSolution = solution;
|
---|
| 127 | bestInput = inputVar;
|
---|
| 128 | }
|
---|
| 129 | problemDataClone.InputVariables.SetItemCheckedState(inputVar, false);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | allowedInputVariables.Remove(bestInput);
|
---|
| 133 | problemDataClone.InputVariables.SetItemCheckedState(bestInput, true);
|
---|
| 134 |
|
---|
| 135 | bestSolution.Name = inputs.ToString() + " " + bestSolution.Name;
|
---|
| 136 | Results["Current solution"].Value = bestSolution;
|
---|
| 137 | ((ItemList<IRegressionSolution>)Results["All Solutions"].Value).Add(bestSolution);
|
---|
| 138 | ((IntValue)Results["Number of variables"].Value).Value = inputs;
|
---|
| 139 | ((DataTable)Results["RMSE table"].Value).Rows["RMSE (train)"].Values.Add(bestSolution.TrainingRootMeanSquaredError);
|
---|
| 140 | ((DataTable)Results["RMSE table"].Value).Rows["RMSE (test)"].Values.Add(bestSolution.TestRootMeanSquaredError);
|
---|
| 141 |
|
---|
| 142 | if (cancellationToken.IsCancellationRequested) {
|
---|
| 143 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | private void InitResults() {
|
---|
| 149 | Results.Add(new Result("Current solution", typeof(IRegressionSolution)));
|
---|
| 150 | Results.Add(new Result("All Solutions", new ItemList<IRegressionSolution>()));
|
---|
| 151 | Results.Add(new Result("Number of variables", new IntValue(0)));
|
---|
| 152 | var rmseTable = new DataTable("RMSE table");
|
---|
| 153 | var trainingRmseRow = new DataRow("RMSE (train)");
|
---|
| 154 | var testRmseRow = new DataRow("RMSE (test)");
|
---|
| 155 | rmseTable.Rows.Add(trainingRmseRow);
|
---|
| 156 | rmseTable.Rows.Add(testRmseRow);
|
---|
| 157 | Results.Add(new Result("RMSE table", rmseTable));
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | private IRegressionSolution RunAlg(FixedDataAnalysisAlgorithm<IRegressionProblem> alg) {
|
---|
| 161 | using (var wh = new AutoResetEvent(false)) {
|
---|
| 162 | EventHandler<EventArgs<Exception>> setWhForException = (sender, args) => { wh.Set(); };
|
---|
| 163 | EventHandler setWh = (sender, args) => { wh.Set(); };
|
---|
| 164 | try {
|
---|
| 165 | alg.ExceptionOccurred += setWhForException;
|
---|
| 166 | alg.Stopped += setWh;
|
---|
| 167 | alg.Prepare(true);
|
---|
| 168 | alg.Start();
|
---|
| 169 |
|
---|
| 170 | wh.WaitOne();
|
---|
| 171 |
|
---|
| 172 | return alg.Results.Select(r => r.Value).OfType<IRegressionSolution>().FirstOrDefault();
|
---|
| 173 | } finally {
|
---|
| 174 | alg.ExceptionOccurred -= setWhForException;
|
---|
| 175 | alg.Stopped -= setWh;
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 | }
|
---|