1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.Collections.Generic;
|
---|
22 | using System.IO;
|
---|
23 | using System.Globalization;
|
---|
24 | using System.Threading;
|
---|
25 |
|
---|
26 | namespace SVM
|
---|
27 | {
|
---|
28 | /// <summary>
|
---|
29 | /// A transform which learns the mean and variance of a sample set and uses these to transform new data
|
---|
30 | /// so that it has zero mean and unit variance.
|
---|
31 | /// </summary>
|
---|
32 | public class GaussianTransform : IRangeTransform
|
---|
33 | {
|
---|
34 | private double[] _means;
|
---|
35 | private double[] _stddevs;
|
---|
36 |
|
---|
37 | /// <summary>
|
---|
38 | /// Determines the Gaussian transform for the provided problem.
|
---|
39 | /// </summary>
|
---|
40 | /// <param name="prob">The Problem to analyze</param>
|
---|
41 | /// <returns>The Gaussian transform for the problem</returns>
|
---|
42 | public static GaussianTransform Compute(Problem prob)
|
---|
43 | {
|
---|
44 | int[] counts = new int[prob.MaxIndex];
|
---|
45 | double[] means = new double[prob.MaxIndex];
|
---|
46 | foreach (Node[] sample in prob.X)
|
---|
47 | {
|
---|
48 | for (int i = 0; i < sample.Length; i++)
|
---|
49 | {
|
---|
50 | means[sample[i].Index-1] += sample[i].Value;
|
---|
51 | counts[sample[i].Index-1]++;
|
---|
52 | }
|
---|
53 | }
|
---|
54 | for (int i = 0; i < prob.MaxIndex; i++)
|
---|
55 | {
|
---|
56 | if (counts[i] == 0)
|
---|
57 | counts[i] = 2;
|
---|
58 | means[i] /= counts[i];
|
---|
59 | }
|
---|
60 |
|
---|
61 | double[] stddevs = new double[prob.MaxIndex];
|
---|
62 | foreach (Node[] sample in prob.X)
|
---|
63 | {
|
---|
64 | for (int i = 0; i < sample.Length; i++)
|
---|
65 | {
|
---|
66 | double diff = sample[i].Value - means[sample[i].Index - 1];
|
---|
67 | stddevs[sample[i].Index - 1] += diff * diff;
|
---|
68 | }
|
---|
69 | }
|
---|
70 | for (int i = 0; i < prob.MaxIndex; i++)
|
---|
71 | {
|
---|
72 | if (stddevs[i] == 0)
|
---|
73 | continue;
|
---|
74 | stddevs[i] /= (counts[i] - 1);
|
---|
75 | stddevs[i] = Math.Sqrt(stddevs[i]);
|
---|
76 | }
|
---|
77 |
|
---|
78 | return new GaussianTransform(means, stddevs);
|
---|
79 | }
|
---|
80 |
|
---|
81 | /// <summary>
|
---|
82 | /// Constructor.
|
---|
83 | /// </summary>
|
---|
84 | /// <param name="means">Means in each dimension</param>
|
---|
85 | /// <param name="stddevs">Standard deviation in each dimension</param>
|
---|
86 | public GaussianTransform(double[] means, double[] stddevs)
|
---|
87 | {
|
---|
88 | _means = means;
|
---|
89 | _stddevs = stddevs;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /// <summary>
|
---|
93 | /// Saves the transform to the disk. The samples are not stored, only the
|
---|
94 | /// statistics.
|
---|
95 | /// </summary>
|
---|
96 | /// <param name="stream">The destination stream</param>
|
---|
97 | /// <param name="transform">The transform</param>
|
---|
98 | public static void Write(Stream stream, GaussianTransform transform)
|
---|
99 | {
|
---|
100 | TemporaryCulture.Start();
|
---|
101 |
|
---|
102 | StreamWriter output = new StreamWriter(stream);
|
---|
103 | output.WriteLine(transform._means.Length);
|
---|
104 | for (int i = 0; i < transform._means.Length; i++)
|
---|
105 | output.WriteLine("{0} {1}", transform._means[i], transform._stddevs[i]);
|
---|
106 | output.Flush();
|
---|
107 |
|
---|
108 | TemporaryCulture.Stop();
|
---|
109 | }
|
---|
110 |
|
---|
111 | /// <summary>
|
---|
112 | /// Reads a GaussianTransform from the provided stream.
|
---|
113 | /// </summary>
|
---|
114 | /// <param name="stream">The source stream</param>
|
---|
115 | /// <returns>The transform</returns>
|
---|
116 | public static GaussianTransform Read(Stream stream)
|
---|
117 | {
|
---|
118 | TemporaryCulture.Start();
|
---|
119 |
|
---|
120 | StreamReader input = new StreamReader(stream);
|
---|
121 | int length = int.Parse(input.ReadLine(), CultureInfo.InvariantCulture);
|
---|
122 | double[] means = new double[length];
|
---|
123 | double[] stddevs = new double[length];
|
---|
124 | for (int i = 0; i < length; i++)
|
---|
125 | {
|
---|
126 | string[] parts = input.ReadLine().Split();
|
---|
127 | means[i] = double.Parse(parts[0], CultureInfo.InvariantCulture);
|
---|
128 | stddevs[i] = double.Parse(parts[1], CultureInfo.InvariantCulture);
|
---|
129 | }
|
---|
130 |
|
---|
131 | TemporaryCulture.Stop();
|
---|
132 |
|
---|
133 | return new GaussianTransform(means, stddevs);
|
---|
134 | }
|
---|
135 |
|
---|
136 | /// <summary>
|
---|
137 | /// Saves the transform to the disk. The samples are not stored, only the
|
---|
138 | /// statistics.
|
---|
139 | /// </summary>
|
---|
140 | /// <param name="filename">The destination filename</param>
|
---|
141 | /// <param name="transform">The transform</param>
|
---|
142 | public static void Write(string filename, GaussianTransform transform)
|
---|
143 | {
|
---|
144 | FileStream output = File.Open(filename, FileMode.Create);
|
---|
145 | try
|
---|
146 | {
|
---|
147 | Write(output, transform);
|
---|
148 | }
|
---|
149 | finally
|
---|
150 | {
|
---|
151 | output.Close();
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | /// <summary>
|
---|
156 | /// Reads a GaussianTransform from the provided stream.
|
---|
157 | /// </summary>
|
---|
158 | /// <param name="filename">The source filename</param>
|
---|
159 | /// <returns>The transform</returns>
|
---|
160 | public static GaussianTransform Read(string filename)
|
---|
161 | {
|
---|
162 | FileStream input = File.Open(filename, FileMode.Open);
|
---|
163 | try
|
---|
164 | {
|
---|
165 | return Read(input);
|
---|
166 | }
|
---|
167 | finally
|
---|
168 | {
|
---|
169 | input.Close();
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | #region IRangeTransform Members
|
---|
174 |
|
---|
175 | /// <summary>
|
---|
176 | /// Transform the input value using the transform stored for the provided index.
|
---|
177 | /// </summary>
|
---|
178 | /// <param name="input">Input value</param>
|
---|
179 | /// <param name="index">Index of the transform to use</param>
|
---|
180 | /// <returns>The transformed value</returns>
|
---|
181 | public double Transform(double input, int index)
|
---|
182 | {
|
---|
183 | index--;
|
---|
184 | if (_stddevs[index] == 0)
|
---|
185 | return 0;
|
---|
186 | double diff = input - _means[index];
|
---|
187 | diff /= _stddevs[index];
|
---|
188 | return diff;
|
---|
189 | }
|
---|
190 | /// <summary>
|
---|
191 | /// Transforms the input array.
|
---|
192 | /// </summary>
|
---|
193 | /// <param name="input">The array to transform</param>
|
---|
194 | /// <returns>The transformed array</returns>
|
---|
195 | public Node[] Transform(Node[] input)
|
---|
196 | {
|
---|
197 | Node[] output = new Node[input.Length];
|
---|
198 | for (int i = 0; i < output.Length; i++)
|
---|
199 | {
|
---|
200 | int index = input[i].Index;
|
---|
201 | double value = input[i].Value;
|
---|
202 | output[i] = new Node(index, Transform(value, index));
|
---|
203 | }
|
---|
204 | return output;
|
---|
205 | }
|
---|
206 |
|
---|
207 | #endregion
|
---|
208 | }
|
---|
209 | }
|
---|