Free cookie consent management tool by TermsFeed Policy Generator

source: branches/MPI/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views/3.4/InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView.cs @ 6349

Last change on this file since 6349 was 6256, checked in by mkommend, 14 years ago

#1478: Added optimize button in symbolic regression simplifier view.

File size: 7.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Problems.DataAnalysis.Symbolic.Views;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views {
30  public partial class InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView {
31    private readonly ConstantTreeNode constantNode;
32    private readonly SymbolicExpressionTree tempTree;
33
34    public new SymbolicDiscriminantFunctionClassificationSolution Content {
35      get { return (SymbolicDiscriminantFunctionClassificationSolution)base.Content; }
36      set { base.Content = value; }
37    }
38
39    public InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView()
40      : base() {
41      InitializeComponent();
42      this.Caption = "Interactive Classification Solution Simplifier";
43
44      constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
45      ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
46      ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
47      root.AddSubtree(start);
48      tempTree = new SymbolicExpressionTree(root);
49    }
50
51    protected override void UpdateModel(ISymbolicExpressionTree tree) {
52      Content.Model = new SymbolicDiscriminantFunctionClassificationModel(tree, Content.Model.Interpreter);
53      Content.SetClassDistibutionCutPointThresholds();
54    }
55
56    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree) {
57      Dictionary<ISymbolicExpressionTreeNode, double> replacementValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
58      foreach (ISymbolicExpressionTreeNode node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) {
59        replacementValues[node] = CalculateReplacementValue(node, tree);
60      }
61      return replacementValues;
62    }
63
64    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree) {
65      var interpreter = Content.Model.Interpreter;
66      var dataset = Content.ProblemData.Dataset;
67      var rows = Content.ProblemData.TrainingIndizes;
68      string targetVariable = Content.ProblemData.TargetVariable;
69      Dictionary<ISymbolicExpressionTreeNode, double> impactValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
70      List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
71
72      var targetClassValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
73      var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
74        .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit)
75        .ToArray();
76      double[] classValues;
77      double[] thresholds;
78      NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, originalOutput, targetClassValues, out classValues, out thresholds);
79      var classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter);
80      classifier.SetThresholdsAndClassValues(thresholds, classValues);
81      OnlineCalculatorError errorState;
82      double originalAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, classifier.GetEstimatedClassValues(dataset, rows), out errorState);
83      if (errorState != OnlineCalculatorError.None) originalAccuracy = 0.0;
84
85      foreach (ISymbolicExpressionTreeNode node in nodes) {
86        var parent = node.Parent;
87        constantNode.Value = CalculateReplacementValue(node, tree);
88        ISymbolicExpressionTreeNode replacementNode = constantNode;
89        SwitchNode(parent, node, replacementNode);
90        var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
91          .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit)
92          .ToArray();
93        NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, newOutput, targetClassValues, out classValues, out thresholds);
94        classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter);
95        classifier.SetThresholdsAndClassValues(thresholds, classValues);
96        double newAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, classifier.GetEstimatedClassValues(dataset, rows), out errorState);
97        if (errorState != OnlineCalculatorError.None) newAccuracy = 0.0;
98
99        // impact = 0 if no change
100        // impact < 0 if new solution is better
101        // impact > 0 if new solution is worse
102        impactValues[node] = originalAccuracy - newAccuracy;
103        SwitchNode(parent, replacementNode, node);
104      }
105      return impactValues;
106    }
107
108    private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) {
109      // remove old ADFs
110      while (tempTree.Root.SubtreesCount > 1) tempTree.Root.RemoveSubtree(1);
111      // clone ADFs of source tree
112      for (int i = 1; i < sourceTree.Root.SubtreesCount; i++) {
113        tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
114      }
115      var start = tempTree.Root.GetSubtree(0);
116      while (start.SubtreesCount > 0) start.RemoveSubtree(0);
117      start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
118      var interpreter = Content.Model.Interpreter;
119      var rows = Content.ProblemData.TrainingIndizes;
120      return interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows).Median();
121    }
122
123
124    private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
125      for (int i = 0; i < root.SubtreesCount; i++) {
126        if (root.GetSubtree(i) == oldBranch) {
127          root.RemoveSubtree(i);
128          root.InsertSubtree(i, newBranch);
129          return;
130        }
131      }
132    }
133
134    protected override void btnOptimizeConstants_Click(object sender, EventArgs e) {
135
136    }
137  }
138}
Note: See TracBrowser for help on using the repository browser.