1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Algorithms.CMAEvolutionStrategy;
|
---|
28 | using HeuristicLab.Analysis;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
33 | using HeuristicLab.Optimization;
|
---|
34 | using HeuristicLab.Parameters;
|
---|
35 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
36 | using HeuristicLab.Problems.TestFunctions.MultiObjective;
|
---|
37 | using HeuristicLab.Random;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.MOCMAEvolutionStrategy {
|
---|
40 | [Item("MOCMAS Evolution Strategy (MOCMASES)", "A multi objective evolution strategy based on covariance matrix adaptation. Code is based on 'Covariance Matrix Adaptation for Multi - objective Optimization' by Igel, Hansen and Roth")]
|
---|
41 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 210)]
|
---|
42 | [StorableClass]
|
---|
43 | public class MOCMASEvolutionStrategy : BasicAlgorithm {
|
---|
44 | public override Type ProblemType
|
---|
45 | {
|
---|
46 | get { return typeof(MultiObjectiveTestFunctionProblem); }
|
---|
47 | }
|
---|
48 | public new MultiObjectiveTestFunctionProblem Problem
|
---|
49 | {
|
---|
50 | get { return (MultiObjectiveTestFunctionProblem)base.Problem; }
|
---|
51 | set { base.Problem = value; }
|
---|
52 | }
|
---|
53 | #region internal variables
|
---|
54 | private readonly IRandom random = new MersenneTwister();
|
---|
55 | private NormalDistributedRandom gauss;
|
---|
56 | private MOCMAESIndividual[] solutions;
|
---|
57 | private MOCMAESParameters internals;
|
---|
58 | #endregion
|
---|
59 |
|
---|
60 | #region ParameterNames
|
---|
61 | private const string MaximumRuntimeName = "Maximum Runtime";
|
---|
62 | private const string SeedName = "Seed";
|
---|
63 | private const string SetSeedRandomlyName = "SetSeedRandomly";
|
---|
64 | private const string PopulationSizeName = "PopulationSize";
|
---|
65 | private const string MaximumGenerationsName = "MaximumGenerations";
|
---|
66 | private const string MaximumEvaluatedSolutionsName = "MaximumEvaluatedSolutions";
|
---|
67 | private const string InitialSigmaName = "InitialSigma";
|
---|
68 | private const string IndicatorName = "Indicator";
|
---|
69 |
|
---|
70 | private const string EvaluationsResultName = "Evaluations";
|
---|
71 | private const string IterationsResultName = "Generations";
|
---|
72 | private const string TimetableResultName = "Timetable";
|
---|
73 | private const string HypervolumeResultName = "Hypervolume";
|
---|
74 | private const string GenerationalDistanceResultName = "Generational Distance";
|
---|
75 | private const string InvertedGenerationalDistanceResultName = "Inverted Generational Distance";
|
---|
76 | private const string CrowdingResultName = "Crowding";
|
---|
77 | private const string SpacingResultName = "Spacing";
|
---|
78 | private const string SolutionsResultName = "Pareto Front";
|
---|
79 | private const string BestHypervolumeResultName = "Best Hypervolume";
|
---|
80 | private const string BestKnownHypervolumeResultName = "Best known hypervolume";
|
---|
81 | private const string DifferenceToBestKnownHypervolumeResultName = "Absolute Distance to BestKnownHypervolume";
|
---|
82 | private const string ScatterPlotResultName = "ScatterPlot";
|
---|
83 |
|
---|
84 | #endregion
|
---|
85 |
|
---|
86 | #region ParameterProperties
|
---|
87 | public IFixedValueParameter<IntValue> MaximumRuntimeParameter
|
---|
88 | {
|
---|
89 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumRuntimeName]; }
|
---|
90 | }
|
---|
91 | public IFixedValueParameter<IntValue> SeedParameter
|
---|
92 | {
|
---|
93 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedName]; }
|
---|
94 | }
|
---|
95 | public FixedValueParameter<BoolValue> SetSeedRandomlyParameter
|
---|
96 | {
|
---|
97 | get { return (FixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyName]; }
|
---|
98 | }
|
---|
99 | private IFixedValueParameter<IntValue> PopulationSizeParameter
|
---|
100 | {
|
---|
101 | get { return (IFixedValueParameter<IntValue>)Parameters[PopulationSizeName]; }
|
---|
102 | }
|
---|
103 | private IFixedValueParameter<IntValue> MaximumGenerationsParameter
|
---|
104 | {
|
---|
105 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumGenerationsName]; }
|
---|
106 | }
|
---|
107 | private IFixedValueParameter<IntValue> MaximumEvaluatedSolutionsParameter
|
---|
108 | {
|
---|
109 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumEvaluatedSolutionsName]; }
|
---|
110 | }
|
---|
111 | private IFixedValueParameter<DoubleValue> InitialSigmaParameter
|
---|
112 | {
|
---|
113 | get { return (IFixedValueParameter<DoubleValue>)Parameters[InitialSigmaName]; }
|
---|
114 | }
|
---|
115 | private IConstrainedValueParameter<IIndicator> IndicatorParameter
|
---|
116 | {
|
---|
117 | get { return (IConstrainedValueParameter<IIndicator>)Parameters[IndicatorName]; }
|
---|
118 | }
|
---|
119 | #endregion
|
---|
120 |
|
---|
121 | #region Properties
|
---|
122 | public int MaximumRuntime
|
---|
123 | {
|
---|
124 | get { return MaximumRuntimeParameter.Value.Value; }
|
---|
125 | set { MaximumRuntimeParameter.Value.Value = value; }
|
---|
126 | }
|
---|
127 | public int Seed
|
---|
128 | {
|
---|
129 | get { return SeedParameter.Value.Value; }
|
---|
130 | set { SeedParameter.Value.Value = value; }
|
---|
131 | }
|
---|
132 | public bool SetSeedRandomly
|
---|
133 | {
|
---|
134 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
135 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
136 | }
|
---|
137 | public int PopulationSize
|
---|
138 | {
|
---|
139 | get { return PopulationSizeParameter.Value.Value; }
|
---|
140 | set { PopulationSizeParameter.Value.Value = value; }
|
---|
141 | }
|
---|
142 | public int MaximumGenerations
|
---|
143 | {
|
---|
144 | get { return MaximumGenerationsParameter.Value.Value; }
|
---|
145 | set { MaximumGenerationsParameter.Value.Value = value; }
|
---|
146 | }
|
---|
147 | public int MaximumEvaluatedSolutions
|
---|
148 | {
|
---|
149 | get { return MaximumEvaluatedSolutionsParameter.Value.Value; }
|
---|
150 | set { MaximumEvaluatedSolutionsParameter.Value.Value = value; }
|
---|
151 | }
|
---|
152 | public double InitialSigma
|
---|
153 | {
|
---|
154 | get { return InitialSigmaParameter.Value.Value; }
|
---|
155 | set { InitialSigmaParameter.Value.Value = value; }
|
---|
156 | }
|
---|
157 | public IIndicator Indicator
|
---|
158 | {
|
---|
159 | get { return IndicatorParameter.Value; }
|
---|
160 | set { IndicatorParameter.Value = value; }
|
---|
161 | }
|
---|
162 |
|
---|
163 |
|
---|
164 | #endregion
|
---|
165 |
|
---|
166 | #region ResultsProperties
|
---|
167 | private int ResultsEvaluations
|
---|
168 | {
|
---|
169 | get { return ((IntValue)Results[EvaluationsResultName].Value).Value; }
|
---|
170 | set { ((IntValue)Results[EvaluationsResultName].Value).Value = value; }
|
---|
171 | }
|
---|
172 | private int ResultsIterations
|
---|
173 | {
|
---|
174 | get { return ((IntValue)Results[IterationsResultName].Value).Value; }
|
---|
175 | set { ((IntValue)Results[IterationsResultName].Value).Value = value; }
|
---|
176 | }
|
---|
177 | #region Datatable
|
---|
178 | private DataTable ResultsQualities
|
---|
179 | {
|
---|
180 | get { return (DataTable)Results[TimetableResultName].Value; }
|
---|
181 | }
|
---|
182 | private DataRow ResultsBestHypervolumeDataLine
|
---|
183 | {
|
---|
184 | get { return ResultsQualities.Rows[BestHypervolumeResultName]; }
|
---|
185 | }
|
---|
186 | private DataRow ResultsHypervolumeDataLine
|
---|
187 | {
|
---|
188 | get { return ResultsQualities.Rows[HypervolumeResultName]; }
|
---|
189 | }
|
---|
190 | private DataRow ResultsGenerationalDistanceDataLine
|
---|
191 | {
|
---|
192 | get { return ResultsQualities.Rows[GenerationalDistanceResultName]; }
|
---|
193 | }
|
---|
194 | private DataRow ResultsInvertedGenerationalDistanceDataLine
|
---|
195 | {
|
---|
196 | get { return ResultsQualities.Rows[InvertedGenerationalDistanceResultName]; }
|
---|
197 | }
|
---|
198 | private DataRow ResultsCrowdingDataLine
|
---|
199 | {
|
---|
200 | get { return ResultsQualities.Rows[CrowdingResultName]; }
|
---|
201 | }
|
---|
202 | private DataRow ResultsSpacingDataLine
|
---|
203 | {
|
---|
204 | get { return ResultsQualities.Rows[SpacingResultName]; }
|
---|
205 | }
|
---|
206 | private DataRow ResultsHypervolumeDifferenceDataLine
|
---|
207 | {
|
---|
208 | get { return ResultsQualities.Rows[DifferenceToBestKnownHypervolumeResultName]; }
|
---|
209 | }
|
---|
210 | #endregion
|
---|
211 | //QualityIndicators
|
---|
212 | private double ResultsHypervolume
|
---|
213 | {
|
---|
214 | get { return ((DoubleValue)Results[HypervolumeResultName].Value).Value; }
|
---|
215 | set { ((DoubleValue)Results[HypervolumeResultName].Value).Value = value; }
|
---|
216 | }
|
---|
217 | private double ResultsGenerationalDistance
|
---|
218 | {
|
---|
219 | get { return ((DoubleValue)Results[GenerationalDistanceResultName].Value).Value; }
|
---|
220 | set { ((DoubleValue)Results[GenerationalDistanceResultName].Value).Value = value; }
|
---|
221 | }
|
---|
222 | private double ResultsInvertedGenerationalDistance
|
---|
223 | {
|
---|
224 | get { return ((DoubleValue)Results[InvertedGenerationalDistanceResultName].Value).Value; }
|
---|
225 | set { ((DoubleValue)Results[InvertedGenerationalDistanceResultName].Value).Value = value; }
|
---|
226 | }
|
---|
227 | private double ResultsCrowding
|
---|
228 | {
|
---|
229 | get { return ((DoubleValue)Results[CrowdingResultName].Value).Value; }
|
---|
230 | set { ((DoubleValue)Results[CrowdingResultName].Value).Value = value; }
|
---|
231 | }
|
---|
232 | private double ResultsSpacing
|
---|
233 | {
|
---|
234 | get { return ((DoubleValue)Results[SpacingResultName].Value).Value; }
|
---|
235 | set { ((DoubleValue)Results[SpacingResultName].Value).Value = value; }
|
---|
236 | }
|
---|
237 | private double ResultsBestHypervolume
|
---|
238 | {
|
---|
239 | get { return ((DoubleValue)Results[BestHypervolumeResultName].Value).Value; }
|
---|
240 | set { ((DoubleValue)Results[BestHypervolumeResultName].Value).Value = value; }
|
---|
241 | }
|
---|
242 | private double ResultsBestKnownHypervolume
|
---|
243 | {
|
---|
244 | get { return ((DoubleValue)Results[BestKnownHypervolumeResultName].Value).Value; }
|
---|
245 | set { ((DoubleValue)Results[BestKnownHypervolumeResultName].Value).Value = value; }
|
---|
246 | }
|
---|
247 | private double ResultsDifferenceBestKnownHypervolume
|
---|
248 | {
|
---|
249 | get { return ((DoubleValue)Results[DifferenceToBestKnownHypervolumeResultName].Value).Value; }
|
---|
250 | set { ((DoubleValue)Results[DifferenceToBestKnownHypervolumeResultName].Value).Value = value; }
|
---|
251 |
|
---|
252 | }
|
---|
253 | //Solutions
|
---|
254 | private DoubleMatrix ResultsSolutions
|
---|
255 | {
|
---|
256 | get { return ((DoubleMatrix)Results[SolutionsResultName].Value); }
|
---|
257 | set { Results[SolutionsResultName].Value = value; }
|
---|
258 | }
|
---|
259 | private ScatterPlotContent ResultsScatterPlot
|
---|
260 | {
|
---|
261 | get { return ((ScatterPlotContent)Results[ScatterPlotResultName].Value); }
|
---|
262 | set { Results[ScatterPlotResultName].Value = value; }
|
---|
263 | }
|
---|
264 | #endregion
|
---|
265 |
|
---|
266 | #region Constructors
|
---|
267 | public MOCMASEvolutionStrategy() {
|
---|
268 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumRuntimeName, "The maximum runtime in seconds after which the algorithm stops. Use -1 to specify no limit for the runtime", new IntValue(3600)));
|
---|
269 | Parameters.Add(new FixedValueParameter<IntValue>(SeedName, "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
270 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyName, "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
271 | Parameters.Add(new FixedValueParameter<IntValue>(PopulationSizeName, "λ (lambda) - the size of the offspring population.", new IntValue(20)));
|
---|
272 | Parameters.Add(new FixedValueParameter<DoubleValue>(InitialSigmaName, "The initial sigma is a single value > 0.", new DoubleValue(0.5)));
|
---|
273 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumGenerationsName, "The maximum number of generations which should be processed.", new IntValue(1000)));
|
---|
274 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumEvaluatedSolutionsName, "The maximum number of evaluated solutions that should be computed.", new IntValue(int.MaxValue)));
|
---|
275 | var set = new ItemSet<IIndicator> { new HypervolumeIndicator(), new CrowdingIndicator() };
|
---|
276 | Parameters.Add(new ConstrainedValueParameter<IIndicator>(IndicatorName, "The selection mechanism on non-dominated solutions", set, set.First()));
|
---|
277 | }
|
---|
278 |
|
---|
279 | [StorableConstructor]
|
---|
280 | protected MOCMASEvolutionStrategy(bool deserializing) : base(deserializing) { }
|
---|
281 | protected MOCMASEvolutionStrategy(MOCMASEvolutionStrategy original, Cloner cloner) : base(original, cloner) { }
|
---|
282 | public override IDeepCloneable Clone(Cloner cloner) { return new MOCMASEvolutionStrategy(this, cloner); }
|
---|
283 | #endregion
|
---|
284 |
|
---|
285 | #region Mainloop
|
---|
286 | protected override void Run(CancellationToken cancellationToken) {
|
---|
287 | // Set up the algorithm
|
---|
288 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
289 | random.Reset(Seed);
|
---|
290 | gauss = new NormalDistributedRandom(random, 0, 1);
|
---|
291 |
|
---|
292 | InitResults();
|
---|
293 | InitStrategy();
|
---|
294 | InitSolutions();
|
---|
295 | AnalyzeSolutions();
|
---|
296 |
|
---|
297 | // Loop until iteration limit reached or canceled.
|
---|
298 | for (ResultsIterations = 1; ResultsIterations < MaximumGenerations; ResultsIterations++) {
|
---|
299 | try {
|
---|
300 | Iterate();
|
---|
301 | cancellationToken.ThrowIfCancellationRequested();
|
---|
302 | }
|
---|
303 | finally {
|
---|
304 | AnalyzeSolutions();
|
---|
305 | }
|
---|
306 | }
|
---|
307 | }
|
---|
308 | private void Iterate() {
|
---|
309 | var offspring = MutateOffspring();
|
---|
310 | PenalizeEvaluate(offspring);
|
---|
311 | var parents = solutions.Concat(offspring).ToArray();
|
---|
312 | SelectParents(parents, solutions.Length);
|
---|
313 | UpdatePopulation(parents);
|
---|
314 | }
|
---|
315 | protected override void OnExecutionTimeChanged() {
|
---|
316 | base.OnExecutionTimeChanged();
|
---|
317 | if (CancellationTokenSource == null) return;
|
---|
318 | if (MaximumRuntime == -1) return;
|
---|
319 | if (ExecutionTime.TotalSeconds > MaximumRuntime) CancellationTokenSource.Cancel();
|
---|
320 | }
|
---|
321 | #endregion
|
---|
322 |
|
---|
323 | #region Initialization
|
---|
324 | private MOCMAESIndividual InitializeIndividual(RealVector x) {
|
---|
325 | var zeros = new RealVector(x.Length);
|
---|
326 | var identity = new double[x.Length, x.Length];
|
---|
327 | for (var i = 0; i < x.Length; i++) identity[i, i] = 1;
|
---|
328 | return new MOCMAESIndividual(x, internals.TargetSuccessProbability, InitialSigma, zeros, identity, internals);
|
---|
329 | }
|
---|
330 | private void InitSolutions() {
|
---|
331 | solutions = new MOCMAESIndividual[PopulationSize];
|
---|
332 | for (var i = 0; i < PopulationSize; i++) {
|
---|
333 | var x = new RealVector(Problem.ProblemSize); // Uniform distibution in all dimensions assumed.
|
---|
334 | // There is the UniformSolutionCreater associated with the Encoding, but it was considered not usable here
|
---|
335 | var bounds = Problem.Bounds;
|
---|
336 | for (var j = 0; j < Problem.ProblemSize; j++) {
|
---|
337 | var dim = j % bounds.Rows;
|
---|
338 | x[j] = random.NextDouble() * (bounds[dim, 1] - bounds[dim, 0]) + bounds[dim, 0];
|
---|
339 | }
|
---|
340 | solutions[i] = InitializeIndividual(x);
|
---|
341 | }
|
---|
342 | PenalizeEvaluate(solutions);
|
---|
343 | }
|
---|
344 | private void InitStrategy() {
|
---|
345 | const int lambda = 1;
|
---|
346 | double n = Problem.ProblemSize;
|
---|
347 |
|
---|
348 | var targetSuccessProbability = 1.0 / (5.0 + Math.Sqrt(lambda) / 2.0);
|
---|
349 | var stepSizeDampeningFactor = 1.0 + n / (2.0 * lambda);
|
---|
350 | var stepSizeLearningRate = targetSuccessProbability * lambda / (2.0 + targetSuccessProbability * lambda);
|
---|
351 | var evolutionPathLearningRate = 2.0 / (n + 2.0);
|
---|
352 | var covarianceMatrixLearningRate = 2.0 / (n * n + 6.0);
|
---|
353 | var covarianceMatrixUnlearningRate = 0.4 / (Math.Pow(n, 1.6) + 1);
|
---|
354 | var successThreshold = 0.44;
|
---|
355 | internals = new MOCMAESParameters(stepSizeLearningRate, stepSizeDampeningFactor, targetSuccessProbability, evolutionPathLearningRate, covarianceMatrixLearningRate, covarianceMatrixUnlearningRate, successThreshold);
|
---|
356 |
|
---|
357 | }
|
---|
358 | private void InitResults() {
|
---|
359 | AddResult(IterationsResultName, "The number of gererations evaluated", new IntValue(0));
|
---|
360 | AddResult(EvaluationsResultName, "The number of function evaltions performed", new IntValue(0));
|
---|
361 | AddResult(HypervolumeResultName, "The hypervolume of the current front considering the Referencepoint defined in the Problem", new DoubleValue(0.0));
|
---|
362 | AddResult(BestHypervolumeResultName, "The best hypervolume of the current run considering the Referencepoint defined in the Problem", new DoubleValue(0.0));
|
---|
363 | AddResult(BestKnownHypervolumeResultName, "The best knwon hypervolume considering the Referencepoint defined in the Problem", new DoubleValue(double.NaN));
|
---|
364 | AddResult(DifferenceToBestKnownHypervolumeResultName, "The difference between the current and the best known hypervolume", new DoubleValue(double.NaN));
|
---|
365 | AddResult(GenerationalDistanceResultName, "The generational distance to an optimal pareto front defined in the Problem", new DoubleValue(double.NaN));
|
---|
366 | AddResult(InvertedGenerationalDistanceResultName, "The inverted generational distance to an optimal pareto front defined in the Problem", new DoubleValue(double.NaN));
|
---|
367 | AddResult(CrowdingResultName, "The average crowding value for the current front (excluding infinities)", new DoubleValue(0.0));
|
---|
368 | AddResult(SpacingResultName, "The spacing for the current front (excluding infinities)", new DoubleValue(0.0));
|
---|
369 |
|
---|
370 | var table = new DataTable("QualityIndicators");
|
---|
371 | table.Rows.Add(new DataRow(BestHypervolumeResultName));
|
---|
372 | table.Rows.Add(new DataRow(HypervolumeResultName));
|
---|
373 | table.Rows.Add(new DataRow(CrowdingResultName));
|
---|
374 | table.Rows.Add(new DataRow(GenerationalDistanceResultName));
|
---|
375 | table.Rows.Add(new DataRow(InvertedGenerationalDistanceResultName));
|
---|
376 | table.Rows.Add(new DataRow(DifferenceToBestKnownHypervolumeResultName));
|
---|
377 | table.Rows.Add(new DataRow(SpacingResultName));
|
---|
378 | AddResult(TimetableResultName, "Different quality meassures in a timeseries", table);
|
---|
379 | AddResult(SolutionsResultName, "The current front", new DoubleMatrix());
|
---|
380 | AddResult(ScatterPlotResultName, "A scatterplot displaying the evaluated solutions and (if available) the analytically optimal front", new ScatterPlotContent(null, null, null, 2));
|
---|
381 |
|
---|
382 | if (Problem.BestKnownFront != null) {
|
---|
383 | ResultsBestKnownHypervolume = Hypervolume.Calculate(Utilities.ToArray(Problem.BestKnownFront), Problem.TestFunction.ReferencePoint(Problem.Objectives), Problem.Maximization);
|
---|
384 | ResultsDifferenceBestKnownHypervolume = ResultsBestKnownHypervolume;
|
---|
385 | }
|
---|
386 | ResultsScatterPlot = new ScatterPlotContent(null, null, Utilities.ToArray(Problem.BestKnownFront), Problem.Objectives);
|
---|
387 | }
|
---|
388 | #endregion
|
---|
389 |
|
---|
390 | private MOCMAESIndividual[] MutateOffspring() {
|
---|
391 | var offspring = new MOCMAESIndividual[PopulationSize];
|
---|
392 | for (var i = 0; i < PopulationSize; i++) {
|
---|
393 | offspring[i] = new MOCMAESIndividual(solutions[i]);
|
---|
394 | offspring[i].Mutate(gauss);
|
---|
395 | }
|
---|
396 | return offspring;
|
---|
397 | }
|
---|
398 |
|
---|
399 | #region Evaluation
|
---|
400 | private void PenalizeEvaluate(IEnumerable<MOCMAESIndividual> offspring) {
|
---|
401 | foreach (var child in offspring) {
|
---|
402 | if (IsFeasable(child.Mean)) {
|
---|
403 | child.Fitness = Evaluate(child.Mean);
|
---|
404 | child.PenalizedFitness = child.Fitness;
|
---|
405 | } else {
|
---|
406 | var t = ClosestFeasible(child.Mean);
|
---|
407 | child.Fitness = Evaluate(t);
|
---|
408 | child.PenalizedFitness = Penalize(child.Mean, t, child.Fitness);
|
---|
409 | }
|
---|
410 | }
|
---|
411 | }
|
---|
412 | private double[] Evaluate(RealVector x) {
|
---|
413 | var res = Problem.Evaluate(x);
|
---|
414 | ResultsEvaluations++;
|
---|
415 | return res;
|
---|
416 | }
|
---|
417 | private static double[] Penalize(RealVector x, RealVector t, IEnumerable<double> fitness) {
|
---|
418 | var penalty = x.Select((t1, i) => t1 - t[i]).Sum(d => d * d);
|
---|
419 | return fitness.Select(v => v + penalty).ToArray();
|
---|
420 | }
|
---|
421 | private RealVector ClosestFeasible(RealVector x) {
|
---|
422 | var bounds = Problem.Bounds;
|
---|
423 | var r = new RealVector(x.Length);
|
---|
424 | for (var i = 0; i < x.Length; i++) {
|
---|
425 | var dim = i % bounds.Rows;
|
---|
426 | r[i] = Math.Min(Math.Max(bounds[dim, 0], x[i]), bounds[dim, 1]);
|
---|
427 | }
|
---|
428 | return r;
|
---|
429 | }
|
---|
430 | private bool IsFeasable(RealVector offspring) {
|
---|
431 | var bounds = Problem.Bounds;
|
---|
432 | for (var i = 0; i < offspring.Length; i++) {
|
---|
433 | var dim = i % bounds.Rows;
|
---|
434 | if (bounds[dim, 0] > offspring[i] || offspring[i] > bounds[dim, 1]) return false;
|
---|
435 | }
|
---|
436 | return true;
|
---|
437 | }
|
---|
438 | #endregion
|
---|
439 |
|
---|
440 | private void SelectParents(IReadOnlyList<MOCMAESIndividual> parents, int length) {
|
---|
441 | //perform a nondominated sort to assign the rank to every element
|
---|
442 | var fronts = NonDominatedSort(parents);
|
---|
443 |
|
---|
444 | //deselect the highest rank fronts until we would end up with less or equal mu elements
|
---|
445 | var rank = fronts.Count - 1;
|
---|
446 | var popSize = parents.Count;
|
---|
447 | while (popSize - fronts[rank].Count >= length) {
|
---|
448 | var front = fronts[rank];
|
---|
449 | foreach (var i in front) i.Selected = false;
|
---|
450 | popSize -= front.Count;
|
---|
451 | rank--;
|
---|
452 | }
|
---|
453 |
|
---|
454 | //now use the indicator to deselect the approximatingly worst elements of the last selected front
|
---|
455 | var front1 = fronts[rank];
|
---|
456 | for (; popSize > length; popSize--) {
|
---|
457 | var lc = Indicator.LeastContributer(front1.ToArray(), x => x.PenalizedFitness, Problem);
|
---|
458 | front1[lc].Selected = false;
|
---|
459 | front1.Swap(lc, front1.Count - 1);
|
---|
460 | front1.RemoveAt(front1.Count - 1);
|
---|
461 | }
|
---|
462 | }
|
---|
463 |
|
---|
464 | private void UpdatePopulation(IReadOnlyList<MOCMAESIndividual> parents) {
|
---|
465 | var offspringSucess = new int[solutions.Length];
|
---|
466 | var offspringLength = parents.Count - solutions.Length;
|
---|
467 | for (var i = 0; i < offspringLength; i++) {
|
---|
468 | if (!parents[i + solutions.Length].Selected) continue;
|
---|
469 | parents[i + solutions.Length].UpdateAsOffspring();
|
---|
470 | offspringSucess[i] += MOCMAESIndividual.Success;
|
---|
471 | }
|
---|
472 | for (var i = 0; i < solutions.Length; i++) if (parents[i].Selected) parents[i].UpdateAsParent(offspringSucess[i]);
|
---|
473 | solutions = new MOCMAESIndividual[solutions.Length];
|
---|
474 | var j = 0;
|
---|
475 | foreach (var ind in parents) if (ind.Selected) solutions[j++] = ind;
|
---|
476 | }
|
---|
477 |
|
---|
478 | #region Analysis
|
---|
479 | private void AnalyzeSolutions() {
|
---|
480 | ResultsScatterPlot = new ScatterPlotContent(solutions.Select(x => x.Fitness).ToArray(),
|
---|
481 | solutions.Select(x => x.Mean.ToArray()).ToArray(),
|
---|
482 | ResultsScatterPlot.ParetoFront,
|
---|
483 | ResultsScatterPlot.Objectives);
|
---|
484 | ResultsSolutions = ToMatrix(solutions.Select(x => x.Mean.ToArray()));
|
---|
485 | AnalyzeQualityIndicators();
|
---|
486 | }
|
---|
487 | private void AnalyzeQualityIndicators() {
|
---|
488 | var front = NonDominatedSelect.GetDominatingVectors(solutions.Select(x => x.Fitness), Problem.TestFunction.ReferencePoint(Problem.Objectives), Problem.Maximization, true).ToArray();
|
---|
489 | var bounds = Problem.Bounds.CloneAsMatrix();
|
---|
490 | ResultsCrowding = Crowding.Calculate(front, bounds);
|
---|
491 | ResultsSpacing = Spacing.Calculate(front);
|
---|
492 | ResultsGenerationalDistance = Problem.BestKnownFront != null ? GenerationalDistance.Calculate(front, Utilities.ToArray(Problem.BestKnownFront), 1) : double.NaN;
|
---|
493 |
|
---|
494 | ResultsInvertedGenerationalDistance = Problem.BestKnownFront != null ? InvertedGenerationalDistance.Calculate(front, Utilities.ToArray(Problem.BestKnownFront), 1) : double.NaN;
|
---|
495 |
|
---|
496 | ResultsHypervolume = Hypervolume.Calculate(front, Problem.TestFunction.ReferencePoint(Problem.Objectives), Problem.Maximization);
|
---|
497 | ResultsBestHypervolume = Math.Max(ResultsHypervolume, ResultsBestHypervolume);
|
---|
498 | ResultsDifferenceBestKnownHypervolume = ResultsBestKnownHypervolume - ResultsBestHypervolume;
|
---|
499 |
|
---|
500 | //Datalines
|
---|
501 | ResultsBestHypervolumeDataLine.Values.Add(ResultsBestHypervolume);
|
---|
502 | ResultsHypervolumeDataLine.Values.Add(ResultsHypervolume);
|
---|
503 | ResultsCrowdingDataLine.Values.Add(ResultsCrowding);
|
---|
504 | ResultsGenerationalDistanceDataLine.Values.Add(ResultsGenerationalDistance);
|
---|
505 | ResultsInvertedGenerationalDistanceDataLine.Values.Add(ResultsInvertedGenerationalDistance);
|
---|
506 | ResultsSpacingDataLine.Values.Add(ResultsSpacing);
|
---|
507 | ResultsHypervolumeDifferenceDataLine.Values.Add(ResultsDifferenceBestKnownHypervolume);
|
---|
508 |
|
---|
509 | }
|
---|
510 | #endregion
|
---|
511 |
|
---|
512 |
|
---|
513 |
|
---|
514 | #region Helpers
|
---|
515 | public DoubleMatrix ToMatrix(IEnumerable<double[]> data) {
|
---|
516 | var d2 = data.ToArray();
|
---|
517 | var mat = new DoubleMatrix(d2.Length, d2[0].Length);
|
---|
518 | for (var i = 0; i < mat.Rows; i++) {
|
---|
519 | for (var j = 0; j < mat.Columns; j++) {
|
---|
520 | mat[i, j] = d2[i][j];
|
---|
521 | }
|
---|
522 | }
|
---|
523 | return mat;
|
---|
524 | }
|
---|
525 | private void AddResult<T>(string name1, string desc, T defaultValue) where T : class, IItem {
|
---|
526 | Results.Add(new Result(name1, desc, defaultValue));
|
---|
527 | }
|
---|
528 | //blatantly stolen form HeuristicLab.Optimization.Operators.FastNonDominatedSort
|
---|
529 | //however: Operators.FastNonDominatedSort does not return ranked fronts => rerank after sorting would not be sensible
|
---|
530 | #region FastNonDominatedSort
|
---|
531 | private enum DominationResult { Dominates, IsDominated, IsNonDominated };
|
---|
532 | private List<List<MOCMAESIndividual>> NonDominatedSort(IReadOnlyList<MOCMAESIndividual> individuals) {
|
---|
533 | const bool dominateOnEqualQualities = false;
|
---|
534 | var maximization = Problem.Maximization;
|
---|
535 | if (individuals == null) throw new InvalidOperationException(Name + ": No qualities found.");
|
---|
536 | var populationSize = individuals.Count;
|
---|
537 |
|
---|
538 | var fronts = new List<List<MOCMAESIndividual>>();
|
---|
539 | var dominatedScopes = new Dictionary<MOCMAESIndividual, List<int>>();
|
---|
540 | var dominationCounter = new int[populationSize];
|
---|
541 |
|
---|
542 | for (var pI = 0; pI < populationSize - 1; pI++) {
|
---|
543 | var p = individuals[pI];
|
---|
544 | List<int> dominatedScopesByp;
|
---|
545 | if (!dominatedScopes.TryGetValue(p, out dominatedScopesByp))
|
---|
546 | dominatedScopes[p] = dominatedScopesByp = new List<int>();
|
---|
547 | for (var qI = pI + 1; qI < populationSize; qI++) {
|
---|
548 | var test = Dominates(individuals[pI], individuals[qI], maximization, dominateOnEqualQualities);
|
---|
549 | if (test == DominationResult.Dominates) {
|
---|
550 | dominatedScopesByp.Add(qI);
|
---|
551 | dominationCounter[qI] += 1;
|
---|
552 | } else if (test == DominationResult.IsDominated) {
|
---|
553 | dominationCounter[pI] += 1;
|
---|
554 | if (!dominatedScopes.ContainsKey(individuals[qI]))
|
---|
555 | dominatedScopes.Add(individuals[qI], new List<int>());
|
---|
556 | dominatedScopes[individuals[qI]].Add(pI);
|
---|
557 | }
|
---|
558 | if (pI == populationSize - 2
|
---|
559 | && qI == populationSize - 1
|
---|
560 | && dominationCounter[qI] == 0) {
|
---|
561 | AddToFront(individuals[qI], fronts, 0);
|
---|
562 | }
|
---|
563 | }
|
---|
564 | if (dominationCounter[pI] == 0) {
|
---|
565 | AddToFront(p, fronts, 0);
|
---|
566 | }
|
---|
567 | }
|
---|
568 | var i = 0;
|
---|
569 | while (i < fronts.Count && fronts[i].Count > 0) {
|
---|
570 | var nextFront = new List<MOCMAESIndividual>();
|
---|
571 | foreach (var p in fronts[i]) {
|
---|
572 | List<int> dominatedScopesByp;
|
---|
573 | if (!dominatedScopes.TryGetValue(p, out dominatedScopesByp)) continue;
|
---|
574 | foreach (var dominatedScope in dominatedScopesByp) {
|
---|
575 | dominationCounter[dominatedScope] -= 1;
|
---|
576 | if (dominationCounter[dominatedScope] != 0) continue;
|
---|
577 | nextFront.Add(individuals[dominatedScope]);
|
---|
578 | }
|
---|
579 | }
|
---|
580 | i += 1;
|
---|
581 | fronts.Add(nextFront);
|
---|
582 | }
|
---|
583 |
|
---|
584 | for (i = 0; i < fronts.Count; i++) {
|
---|
585 | foreach (var p in fronts[i]) {
|
---|
586 | p.Rank = i;
|
---|
587 | }
|
---|
588 | }
|
---|
589 | return fronts;
|
---|
590 | }
|
---|
591 | private static void AddToFront(MOCMAESIndividual p, IList<List<MOCMAESIndividual>> fronts, int i) {
|
---|
592 | if (i == fronts.Count) fronts.Add(new List<MOCMAESIndividual>());
|
---|
593 | fronts[i].Add(p);
|
---|
594 | }
|
---|
595 | private static DominationResult Dominates(MOCMAESIndividual left, MOCMAESIndividual right, bool[] maximizations, bool dominateOnEqualQualities) {
|
---|
596 | return Dominates(left.PenalizedFitness, right.PenalizedFitness, maximizations, dominateOnEqualQualities);
|
---|
597 | }
|
---|
598 | private static DominationResult Dominates(IReadOnlyList<double> left, IReadOnlyList<double> right, IReadOnlyList<bool> maximizations, bool dominateOnEqualQualities) {
|
---|
599 | //mkommend Caution: do not use LINQ.SequenceEqual for comparing the two quality arrays (left and right) due to performance reasons
|
---|
600 | if (dominateOnEqualQualities) {
|
---|
601 | var equal = true;
|
---|
602 | for (var i = 0; i < left.Count; i++) {
|
---|
603 | if (left[i] != right[i]) {
|
---|
604 | equal = false;
|
---|
605 | break;
|
---|
606 | }
|
---|
607 | }
|
---|
608 | if (equal) return DominationResult.Dominates;
|
---|
609 | }
|
---|
610 |
|
---|
611 | bool leftIsBetter = false, rightIsBetter = false;
|
---|
612 | for (var i = 0; i < left.Count; i++) {
|
---|
613 | if (IsDominated(left[i], right[i], maximizations[i])) rightIsBetter = true;
|
---|
614 | else if (IsDominated(right[i], left[i], maximizations[i])) leftIsBetter = true;
|
---|
615 | if (leftIsBetter && rightIsBetter) break;
|
---|
616 | }
|
---|
617 |
|
---|
618 | if (leftIsBetter && !rightIsBetter) return DominationResult.Dominates;
|
---|
619 | if (!leftIsBetter && rightIsBetter) return DominationResult.IsDominated;
|
---|
620 | return DominationResult.IsNonDominated;
|
---|
621 | }
|
---|
622 | private static bool IsDominated(double left, double right, bool maximization) {
|
---|
623 | return maximization && left < right
|
---|
624 | || !maximization && left > right;
|
---|
625 | }
|
---|
626 | #endregion
|
---|
627 | #endregion
|
---|
628 | }
|
---|
629 | }
|
---|