[15045] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
| 23 | using System;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Random;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.MOCMAEvolutionStrategy {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | public class Individual : IDeepCloneable {
|
---|
| 33 |
|
---|
| 34 | #region Properties
|
---|
| 35 | [Storable]
|
---|
| 36 | private MOCMAEvolutionStrategy strategy;
|
---|
| 37 |
|
---|
| 38 | //Chromosome
|
---|
| 39 | [Storable]
|
---|
| 40 | public RealVector Mean { get; private set; }
|
---|
| 41 | [Storable]
|
---|
| 42 | private double sigma;//stepsize
|
---|
| 43 | [Storable]
|
---|
| 44 | private RealVector evolutionPath; // pc
|
---|
| 45 | [Storable]
|
---|
| 46 | private RealVector lastStep;
|
---|
| 47 | [Storable]
|
---|
| 48 | private RealVector lastZ;
|
---|
| 49 | [Storable]
|
---|
| 50 | private double[,] lowerCholesky;
|
---|
| 51 |
|
---|
| 52 | //Phenotype
|
---|
| 53 | [Storable]
|
---|
| 54 | public double[] Fitness { get; set; }
|
---|
| 55 | [Storable]
|
---|
| 56 | public double[] PenalizedFitness { get; set; }
|
---|
| 57 | [Storable]
|
---|
| 58 | public bool Selected { get; set; }
|
---|
| 59 | [Storable]
|
---|
| 60 | public double SuccessProbability { get; set; }
|
---|
| 61 | #endregion
|
---|
| 62 |
|
---|
| 63 | #region Constructors and Cloning
|
---|
| 64 | [StorableConstructor]
|
---|
| 65 | protected Individual(bool deserializing) { }
|
---|
| 66 |
|
---|
| 67 | public Individual(RealVector mean, double pSucc, double sigma, RealVector pc, double[,] c, MOCMAEvolutionStrategy strategy) {
|
---|
| 68 | Mean = mean;
|
---|
| 69 | lastStep = new RealVector(mean.Length);
|
---|
| 70 | SuccessProbability = pSucc;
|
---|
| 71 | this.sigma = sigma;
|
---|
| 72 | evolutionPath = pc;
|
---|
| 73 | CholeskyDecomposition(c);
|
---|
| 74 | Selected = true;
|
---|
| 75 | this.strategy = strategy;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public Individual(Individual other) {
|
---|
| 79 | SuccessProbability = other.SuccessProbability;
|
---|
| 80 | sigma = other.sigma;
|
---|
| 81 | evolutionPath = (RealVector)other.evolutionPath.Clone();
|
---|
| 82 | Mean = (RealVector)other.Mean.Clone();
|
---|
| 83 | lowerCholesky = (double[,])other.lowerCholesky.Clone();
|
---|
| 84 | Selected = true;
|
---|
| 85 | strategy = other.strategy;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public Individual(Individual other, Cloner cloner) {
|
---|
| 89 | strategy = cloner.Clone(other.strategy);
|
---|
| 90 | Mean = cloner.Clone(other.Mean);
|
---|
| 91 | sigma = other.sigma;
|
---|
| 92 | evolutionPath = cloner.Clone(other.evolutionPath);
|
---|
| 93 | lastStep = cloner.Clone(other.evolutionPath);
|
---|
| 94 | lastZ = cloner.Clone(other.lastZ);
|
---|
| 95 | lowerCholesky = other.lowerCholesky != null ? other.lowerCholesky.Clone() as double[,] : null;
|
---|
| 96 | Fitness = other.Fitness != null ? other.Fitness.Select(x => x).ToArray() : null;
|
---|
| 97 | PenalizedFitness = other.PenalizedFitness != null ? other.PenalizedFitness.Select(x => x).ToArray() : null;
|
---|
| 98 | Selected = other.Selected;
|
---|
| 99 | SuccessProbability = other.SuccessProbability;
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | public object Clone() {
|
---|
| 103 | return new Cloner().Clone(this);
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | public IDeepCloneable Clone(Cloner cloner) {
|
---|
| 107 | return new Individual(this, cloner);
|
---|
| 108 | }
|
---|
| 109 | #endregion
|
---|
| 110 |
|
---|
| 111 | public void Mutate(NormalDistributedRandom gauss) {
|
---|
| 112 | //sampling a random z from N(0,I) where I is the Identity matrix;
|
---|
| 113 | lastZ = new RealVector(Mean.Length);
|
---|
| 114 | var n = lastZ.Length;
|
---|
| 115 | for (var i = 0; i < n; i++) lastZ[i] = gauss.NextDouble();
|
---|
| 116 | //Matrixmultiplication: lastStep = lowerCholesky * lastZ;
|
---|
| 117 | lastStep = new RealVector(Mean.Length);
|
---|
| 118 | for (var i = 0; i < n; i++) {
|
---|
| 119 | double sum = 0;
|
---|
| 120 | for (var j = 0; j <= i; j++) sum += lowerCholesky[i, j] * lastZ[j];
|
---|
| 121 | lastStep[i] = sum;
|
---|
| 122 | }
|
---|
| 123 | //add the step to x weighted by stepsize;
|
---|
| 124 | for (var i = 0; i < Mean.Length; i++) Mean[i] += sigma * lastStep[i];
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | public void UpdateAsParent(bool offspringSuccessful) {
|
---|
| 128 | SuccessProbability = (1 - strategy.StepSizeLearningRate) * SuccessProbability + strategy.StepSizeLearningRate * (offspringSuccessful ? 1 : 0);
|
---|
| 129 | sigma *= Math.Exp(1 / strategy.StepSizeDampeningFactor * (SuccessProbability - strategy.TargetSuccessProbability) / (1 - strategy.TargetSuccessProbability));
|
---|
| 130 | if (!offspringSuccessful) return;
|
---|
| 131 | if (SuccessProbability < strategy.SuccessThreshold && lastZ != null) {
|
---|
| 132 | var stepNormSqr = lastZ.Sum(d => d * d);
|
---|
| 133 | var rate = strategy.CovarianceMatrixUnlearningRate;
|
---|
| 134 | if (stepNormSqr > 1 && 1 < strategy.CovarianceMatrixUnlearningRate * (2 * stepNormSqr - 1)) rate = 1 / (2 * stepNormSqr - 1);
|
---|
| 135 | CholeskyUpdate(lastStep, 1 + rate, -rate);
|
---|
| 136 | } else RoundUpdate();
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | public void UpdateAsOffspring() {
|
---|
| 140 | SuccessProbability = (1 - strategy.StepSizeLearningRate) * SuccessProbability + strategy.StepSizeLearningRate;
|
---|
| 141 | sigma *= Math.Exp(1 / strategy.StepSizeDampeningFactor * (SuccessProbability - strategy.TargetSuccessProbability) / (1 - strategy.TargetSuccessProbability));
|
---|
| 142 | var evolutionpathUpdateWeight = strategy.EvolutionPathLearningRate * (2.0 - strategy.EvolutionPathLearningRate);
|
---|
| 143 | if (SuccessProbability < strategy.SuccessThreshold) {
|
---|
| 144 | UpdateEvolutionPath(1 - strategy.EvolutionPathLearningRate, evolutionpathUpdateWeight);
|
---|
| 145 | CholeskyUpdate(evolutionPath, 1 - strategy.CovarianceMatrixLearningRate, strategy.CovarianceMatrixLearningRate);
|
---|
[15176] | 146 | } else RoundUpdate();
|
---|
[15045] | 147 | }
|
---|
| 148 |
|
---|
| 149 | public void UpdateEvolutionPath(double learningRate, double updateWeight) {
|
---|
| 150 | updateWeight = Math.Sqrt(updateWeight);
|
---|
| 151 | for (var i = 0; i < evolutionPath.Length; i++) {
|
---|
| 152 | evolutionPath[i] *= learningRate;
|
---|
| 153 | evolutionPath[i] += updateWeight * lastStep[i];
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
[15176] | 157 | #region Helpers
|
---|
[15045] | 158 | private void CholeskyDecomposition(double[,] c) {
|
---|
| 159 | if (!alglib.spdmatrixcholesky(ref c, c.GetLength(0), false))
|
---|
| 160 | throw new ArgumentException("Covariancematrix is not symmetric positiv definit");
|
---|
| 161 | lowerCholesky = (double[,])c.Clone();
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | private void CholeskyUpdate(RealVector v, double alpha, double beta) {
|
---|
| 165 | var n = v.Length;
|
---|
| 166 | var temp = new double[n];
|
---|
| 167 | for (var i = 0; i < n; i++) temp[i] = v[i];
|
---|
| 168 | double betaPrime = 1;
|
---|
| 169 | var a = Math.Sqrt(alpha);
|
---|
| 170 | for (var j = 0; j < n; j++) {
|
---|
| 171 | var ljj = a * lowerCholesky[j, j];
|
---|
| 172 | var dj = ljj * ljj;
|
---|
| 173 | var wj = temp[j];
|
---|
| 174 | var swj2 = beta * wj * wj;
|
---|
| 175 | var gamma = dj * betaPrime + swj2;
|
---|
| 176 | var x1 = dj + swj2 / betaPrime;
|
---|
[15176] | 177 | if (x1 < 0.0) return;
|
---|
[15045] | 178 | var nLjj = Math.Sqrt(x1);
|
---|
| 179 | lowerCholesky[j, j] = nLjj;
|
---|
| 180 | betaPrime += swj2 / dj;
|
---|
| 181 | if (j + 1 >= n) continue;
|
---|
| 182 | for (var i = j + 1; i < n; i++) lowerCholesky[i, j] *= a;
|
---|
| 183 | for (var i = j + 1; i < n; i++) temp[i] = wj / ljj * lowerCholesky[i, j];
|
---|
| 184 | if (gamma.IsAlmost(0)) continue;
|
---|
| 185 | for (var i = j + 1; i < n; i++) lowerCholesky[i, j] *= nLjj / ljj;
|
---|
| 186 | for (var i = j + 1; i < n; i++) lowerCholesky[i, j] += nLjj * beta * wj / gamma * temp[i];
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | private void RoundUpdate() {
|
---|
| 191 | var evolutionPathUpdateWeight = strategy.EvolutionPathLearningRate * (2.0 - strategy.EvolutionPathLearningRate);
|
---|
| 192 | UpdateEvolutionPath(1 - strategy.EvolutionPathLearningRate, 0);
|
---|
| 193 | CholeskyUpdate(evolutionPath, 1 - strategy.CovarianceMatrixLearningRate + evolutionPathUpdateWeight, strategy.CovarianceMatrixLearningRate);
|
---|
| 194 | }
|
---|
| 195 | #endregion
|
---|
| 196 | }
|
---|
| 197 | }
|
---|