1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Optimization.Operators.LCS {
|
---|
29 | [StorableClass]
|
---|
30 | [Item("MDLCalculator", "")]
|
---|
31 | public class MDLCalculator : Item {
|
---|
32 |
|
---|
33 | [Storable]
|
---|
34 | private int activationIteration;
|
---|
35 |
|
---|
36 | [Storable]
|
---|
37 | private bool activated;
|
---|
38 | [Storable]
|
---|
39 | private bool fixedWeight;
|
---|
40 |
|
---|
41 | [Storable]
|
---|
42 | private double theoryWeight;
|
---|
43 |
|
---|
44 | [Storable]
|
---|
45 | private double initialTheoryLengthRatio;
|
---|
46 | [Storable]
|
---|
47 | private double weightRelaxFactor;
|
---|
48 |
|
---|
49 | [Storable]
|
---|
50 | private IList<double> accuracyStatistic;
|
---|
51 | [Storable]
|
---|
52 | private int iterationsSinceBest;
|
---|
53 | [Storable]
|
---|
54 | private double bestFitness;
|
---|
55 |
|
---|
56 | [Storable]
|
---|
57 | private int weightAdaptionIterations;
|
---|
58 |
|
---|
59 | [StorableConstructor]
|
---|
60 | protected MDLCalculator(bool deserializing) : base(deserializing) { }
|
---|
61 | protected MDLCalculator(MDLCalculator original, Cloner cloner)
|
---|
62 | : base(original, cloner) {
|
---|
63 | }
|
---|
64 | public MDLCalculator(int activationIteration, double initialTheoryLengthRatio, double weightRelaxFactor, int weightAdaptionIterations)
|
---|
65 | : base() {
|
---|
66 | this.activationIteration = activationIteration;
|
---|
67 | this.initialTheoryLengthRatio = initialTheoryLengthRatio;
|
---|
68 | this.weightRelaxFactor = weightRelaxFactor;
|
---|
69 | this.weightAdaptionIterations = weightAdaptionIterations;
|
---|
70 | activated = false;
|
---|
71 | fixedWeight = false;
|
---|
72 | accuracyStatistic = new List<double>();
|
---|
73 | iterationsSinceBest = 0;
|
---|
74 | }
|
---|
75 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
76 | return new MDLCalculator(this, cloner);
|
---|
77 | }
|
---|
78 |
|
---|
79 | public void StartNewIteration(IGAssistSolution bestSolution, int currentIteration) {
|
---|
80 | if (currentIteration == activationIteration) {
|
---|
81 | activated = true;
|
---|
82 | double error = bestSolution.TrainingExceptionsLength;
|
---|
83 | double tl = (bestSolution.TrainingTheoryLength * bestSolution.Classes) / bestSolution.TrainingNumberOfAliveRules;
|
---|
84 | if (tl.IsAlmost(0.0)) {
|
---|
85 | //as done in the original implementation
|
---|
86 | tl = 0.00000001;
|
---|
87 | }
|
---|
88 | theoryWeight = (initialTheoryLengthRatio / (1.0 - initialTheoryLengthRatio)) * (error / tl);
|
---|
89 | iterationsSinceBest = 0;
|
---|
90 | }
|
---|
91 |
|
---|
92 | if (activated && !fixedWeight &&
|
---|
93 | GetLastIterationsAccuracyAverage(weightAdaptionIterations).IsAlmost(1.0)) {
|
---|
94 | fixedWeight = true;
|
---|
95 | }
|
---|
96 |
|
---|
97 | if (activated && !fixedWeight) {
|
---|
98 | if (bestSolution.TrainingAccuracy.IsAlmost(1.0)) {
|
---|
99 | if (iterationsSinceBest == weightAdaptionIterations) {
|
---|
100 | theoryWeight *= weightRelaxFactor;
|
---|
101 | iterationsSinceBest = 0;
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|
105 |
|
---|
106 | UpdateStatistic(bestSolution.TrainingAccuracy);
|
---|
107 | }
|
---|
108 |
|
---|
109 | private void UpdateStatistic(double accuracy) {
|
---|
110 | if (iterationsSinceBest == 0) {
|
---|
111 | bestFitness = accuracy;
|
---|
112 | iterationsSinceBest++;
|
---|
113 | } else if (accuracy > bestFitness) {
|
---|
114 | bestFitness = accuracy;
|
---|
115 | iterationsSinceBest = 1;
|
---|
116 | } else {
|
---|
117 | iterationsSinceBest++;
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 | private double GetLastIterationsAccuracyAverage(int iterations) {
|
---|
122 | int startAt = accuracyStatistic.Count - iterations;
|
---|
123 | startAt = startAt > 0 ? startAt : 0;
|
---|
124 | return accuracyStatistic.Skip(startAt).Sum() / (accuracyStatistic.Count - startAt);
|
---|
125 | }
|
---|
126 |
|
---|
127 | public double CalculateFitness(IGAssistSolution dls) {
|
---|
128 | double fitness = 0;
|
---|
129 | if (activated) {
|
---|
130 | fitness = dls.TrainingTheoryLength * theoryWeight;
|
---|
131 | }
|
---|
132 | fitness += 105.0 - dls.TrainingAccuracy * 100.0;
|
---|
133 | return fitness;
|
---|
134 | }
|
---|
135 |
|
---|
136 | public double CalculateFitness(double theoryLength, double accuracy) {
|
---|
137 | double fitness = 0;
|
---|
138 | if (activated) {
|
---|
139 | fitness = theoryLength * theoryWeight;
|
---|
140 | }
|
---|
141 | fitness += 105.0 - accuracy * 100.0;
|
---|
142 | return fitness;
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|