1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Optimization.Operators.LCS {
|
---|
33 | [Item("ILASOperator", "Description missing")]
|
---|
34 | [StorableClass]
|
---|
35 | public class ILASOperator : SingleSuccessorOperator, IStochasticOperator {
|
---|
36 |
|
---|
37 | #region Parameter Properties
|
---|
38 | public ILookupParameter<IRandom> RandomParameter {
|
---|
39 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
40 | }
|
---|
41 | public ILookupParameter<IGAssistProblemData> ProblemDataParameter {
|
---|
42 | get { return (ILookupParameter<IGAssistProblemData>)Parameters["ProblemData"]; }
|
---|
43 | }
|
---|
44 | public IValueLookupParameter<IntValue> NumberOfStrataParameter {
|
---|
45 | get { return (IValueLookupParameter<IntValue>)Parameters["NumberOfStrata"]; }
|
---|
46 | }
|
---|
47 | public IValueLookupParameter<ItemList<ItemList<IntValue>>> StrataParameter {
|
---|
48 | get { return (IValueLookupParameter<ItemList<ItemList<IntValue>>>)Parameters["Strata"]; }
|
---|
49 | }
|
---|
50 | #endregion
|
---|
51 |
|
---|
52 | [StorableConstructor]
|
---|
53 | protected ILASOperator(bool deserializing) : base(deserializing) { }
|
---|
54 | protected ILASOperator(ILASOperator original, Cloner cloner)
|
---|
55 | : base(original, cloner) {
|
---|
56 | }
|
---|
57 | public ILASOperator()
|
---|
58 | : base() {
|
---|
59 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random generator to use."));
|
---|
60 | Parameters.Add(new LookupParameter<IGAssistProblemData>("ProblemData", ""));
|
---|
61 | Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfStrata", ""));
|
---|
62 | Parameters.Add(new ValueLookupParameter<ItemList<ItemList<IntValue>>>("Strata", ""));
|
---|
63 | }
|
---|
64 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
65 | return new ILASOperator(this, cloner);
|
---|
66 | }
|
---|
67 |
|
---|
68 | public override IOperation Apply() {
|
---|
69 | if (StrataParameter.ActualValue == null) {
|
---|
70 | //initialize strata
|
---|
71 | int numberOfStrata = NumberOfStrataParameter.ActualValue.Value;
|
---|
72 | var strata = new ItemList<ItemList<IntValue>>(numberOfStrata);
|
---|
73 | for (int i = 0; i < numberOfStrata; i++) {
|
---|
74 | strata.Add(new ItemList<IntValue>());
|
---|
75 | }
|
---|
76 |
|
---|
77 | //get all rows for every niche
|
---|
78 | var problemData = ProblemDataParameter.ActualValue;
|
---|
79 | IntRange evaluate = ProblemDataParameter.ActualValue.TrainingPartition;
|
---|
80 | Dictionary<IGAssistNiche, List<int>> nicheRows = null;
|
---|
81 | for (int row = evaluate.Start; row < evaluate.End; row++) {
|
---|
82 | if (problemData.IsTrainingSample(row)) {
|
---|
83 | var niche = problemData.FetchAction(row);
|
---|
84 | if (nicheRows == null) {
|
---|
85 | nicheRows = new Dictionary<IGAssistNiche, List<int>>(niche.Comparer);
|
---|
86 | }
|
---|
87 | if (!nicheRows.ContainsKey(niche)) {
|
---|
88 | nicheRows.Add(niche, new List<int>());
|
---|
89 | }
|
---|
90 | nicheRows[niche].Add(row);
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | //distribute niches to strata
|
---|
95 | var random = RandomParameter.ActualValue;
|
---|
96 | foreach (var niche in nicheRows.Keys) {
|
---|
97 | var rows = nicheRows[niche];
|
---|
98 | int count = 0;
|
---|
99 | while (rows.Count > 0) {
|
---|
100 | int pos = random.Next(rows.Count);
|
---|
101 | strata[count % numberOfStrata].Add(new IntValue(rows[pos]));
|
---|
102 | rows.RemoveAt(pos);
|
---|
103 | count++;
|
---|
104 | }
|
---|
105 | }
|
---|
106 |
|
---|
107 | if (strata.Any(x => x.Count() == 0)) {
|
---|
108 | throw new ArgumentException("At least one strata is empty. Use less strata or add more data.");
|
---|
109 | }
|
---|
110 |
|
---|
111 | StrataParameter.ActualValue = strata;
|
---|
112 | }
|
---|
113 | return base.Apply();
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|