1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.ConditionActionEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Optimization.Operators;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 | using HeuristicLab.Random;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.LearningClassifierSystems {
|
---|
37 | /// <summary>
|
---|
38 | /// A learning classifier system.
|
---|
39 | /// </summary>
|
---|
40 | [Item("XCS", "A learning classifier system")]
|
---|
41 | [Creatable("Algorithms")]
|
---|
42 | [StorableClass]
|
---|
43 | public sealed class LearningClassifierSystem : HeuristicOptimizationEngineAlgorithm, IStorableContent {
|
---|
44 | public string Filename { get; set; }
|
---|
45 |
|
---|
46 | #region Problem Properties
|
---|
47 | public override Type ProblemType {
|
---|
48 | get { return typeof(IConditionActionProblem); }
|
---|
49 | }
|
---|
50 | public new IConditionActionProblem Problem {
|
---|
51 | get { return (IConditionActionProblem)base.Problem; }
|
---|
52 | set { base.Problem = value; }
|
---|
53 | }
|
---|
54 | #endregion
|
---|
55 |
|
---|
56 | #region Parameter Properties
|
---|
57 | private ValueParameter<IntValue> SeedParameter {
|
---|
58 | get { return (ValueParameter<IntValue>)Parameters["Seed"]; }
|
---|
59 | }
|
---|
60 | private ValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
61 | get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
|
---|
62 | }
|
---|
63 | private ValueParameter<BoolValue> CreateInitialPopulationParameter {
|
---|
64 | get { return (ValueParameter<BoolValue>)Parameters["CreateInitialPopulation"]; }
|
---|
65 | }
|
---|
66 | private ValueParameter<IntValue> PopulationSizeParameter {
|
---|
67 | get { return (ValueParameter<IntValue>)Parameters["N"]; }
|
---|
68 | }
|
---|
69 | private ValueParameter<PercentValue> BetaParameter {
|
---|
70 | get { return (ValueParameter<PercentValue>)Parameters["Beta"]; }
|
---|
71 | }
|
---|
72 | private ValueParameter<PercentValue> AlphaParameter {
|
---|
73 | get { return (ValueParameter<PercentValue>)Parameters["Alpha"]; }
|
---|
74 | }
|
---|
75 | private ValueParameter<DoubleValue> ErrorZeroParameter {
|
---|
76 | get { return (ValueParameter<DoubleValue>)Parameters["ErrorZero"]; }
|
---|
77 | }
|
---|
78 | private ValueParameter<DoubleValue> PowerParameter {
|
---|
79 | get { return (ValueParameter<DoubleValue>)Parameters["v"]; }
|
---|
80 | }
|
---|
81 | private ValueParameter<PercentValue> GammaParameter {
|
---|
82 | get { return (ValueParameter<PercentValue>)Parameters["Gamma"]; }
|
---|
83 | }
|
---|
84 | private ValueParameter<PercentValue> CrossoverProbabilityParameter {
|
---|
85 | get { return (ValueParameter<PercentValue>)Parameters["CrossoverProbability"]; }
|
---|
86 | }
|
---|
87 | private ValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
88 | get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
89 | }
|
---|
90 | private ValueParameter<IntValue> ThetaGAParameter {
|
---|
91 | get { return (ValueParameter<IntValue>)Parameters["ThetaGA"]; }
|
---|
92 | }
|
---|
93 | private ValueParameter<IntValue> ThetaDeletionParameter {
|
---|
94 | get { return (ValueParameter<IntValue>)Parameters["ThetaDeletion"]; }
|
---|
95 | }
|
---|
96 | private ValueParameter<IntValue> ThetaSubsumptionParameter {
|
---|
97 | get { return (ValueParameter<IntValue>)Parameters["ThetaSubsumption"]; }
|
---|
98 | }
|
---|
99 | private ValueParameter<PercentValue> DeltaParameter {
|
---|
100 | get { return (ValueParameter<PercentValue>)Parameters["Delta"]; }
|
---|
101 | }
|
---|
102 | private ValueParameter<PercentValue> ExplorationProbabilityParameter {
|
---|
103 | get { return (ValueParameter<PercentValue>)Parameters["ExplorationProbability"]; }
|
---|
104 | }
|
---|
105 | private ValueParameter<BoolValue> DoGASubsumptionParameter {
|
---|
106 | get { return (ValueParameter<BoolValue>)Parameters["DoGASubsumption"]; }
|
---|
107 | }
|
---|
108 | private ValueParameter<BoolValue> DoActionSetSubsumptionParameter {
|
---|
109 | get { return (ValueParameter<BoolValue>)Parameters["DoActionSetSubsumption"]; }
|
---|
110 | }
|
---|
111 | private ValueParameter<MultiAnalyzer> AnalyzerParameter {
|
---|
112 | get { return (ValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
|
---|
113 | }
|
---|
114 | private ValueParameter<MultiAnalyzer> FinalAnalyzerParameter {
|
---|
115 | get { return (ValueParameter<MultiAnalyzer>)Parameters["FinalAnalyzer"]; }
|
---|
116 | }
|
---|
117 | private ValueParameter<IntValue> MaxIterationsParameter {
|
---|
118 | get { return (ValueParameter<IntValue>)Parameters["MaxIterations"]; }
|
---|
119 | }
|
---|
120 | public IConstrainedValueParameter<ISelector> SelectorParameter {
|
---|
121 | get { return (IConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
|
---|
122 | }
|
---|
123 | public IConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
124 | get { return (IConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
|
---|
125 | }
|
---|
126 | public IConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
127 | get { return (IConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
|
---|
128 | }
|
---|
129 | public ValueParameter<IntValue> AnalyzeInIterationParameter {
|
---|
130 | get { return (ValueParameter<IntValue>)Parameters["AnalyzeInIteration"]; }
|
---|
131 | }
|
---|
132 | #endregion
|
---|
133 |
|
---|
134 | #region Properties
|
---|
135 | public IntValue Seed {
|
---|
136 | get { return SeedParameter.Value; }
|
---|
137 | set { SeedParameter.Value = value; }
|
---|
138 | }
|
---|
139 | public BoolValue SetSeedRandomly {
|
---|
140 | get { return SetSeedRandomlyParameter.Value; }
|
---|
141 | set { SetSeedRandomlyParameter.Value = value; }
|
---|
142 | }
|
---|
143 | public BoolValue CreateInitialPopulation {
|
---|
144 | get { return CreateInitialPopulationParameter.Value; }
|
---|
145 | set { CreateInitialPopulationParameter.Value = value; }
|
---|
146 | }
|
---|
147 | public IntValue PopulationSize {
|
---|
148 | get { return PopulationSizeParameter.Value; }
|
---|
149 | set { PopulationSizeParameter.Value = value; }
|
---|
150 | }
|
---|
151 | public PercentValue Beta {
|
---|
152 | get { return BetaParameter.Value; }
|
---|
153 | set { BetaParameter.Value = value; }
|
---|
154 | }
|
---|
155 | public PercentValue Alpha {
|
---|
156 | get { return AlphaParameter.Value; }
|
---|
157 | set { AlphaParameter.Value = value; }
|
---|
158 | }
|
---|
159 | public DoubleValue ErrorZero {
|
---|
160 | get { return ErrorZeroParameter.Value; }
|
---|
161 | set { ErrorZeroParameter.Value = value; }
|
---|
162 | }
|
---|
163 | public DoubleValue Power {
|
---|
164 | get { return PowerParameter.Value; }
|
---|
165 | set { PowerParameter.Value = value; }
|
---|
166 | }
|
---|
167 | public PercentValue Gamma {
|
---|
168 | get { return GammaParameter.Value; }
|
---|
169 | set { GammaParameter.Value = value; }
|
---|
170 | }
|
---|
171 | public PercentValue CrossoverProbability {
|
---|
172 | get { return CrossoverProbabilityParameter.Value; }
|
---|
173 | set { CrossoverProbabilityParameter.Value = value; }
|
---|
174 | }
|
---|
175 | public PercentValue MutationProbability {
|
---|
176 | get { return MutationProbabilityParameter.Value; }
|
---|
177 | set { MutationProbabilityParameter.Value = value; }
|
---|
178 | }
|
---|
179 | public IntValue ThetaGA {
|
---|
180 | get { return ThetaGAParameter.Value; }
|
---|
181 | set { ThetaGAParameter.Value = value; }
|
---|
182 | }
|
---|
183 | public IntValue ThetaDeletion {
|
---|
184 | get { return ThetaDeletionParameter.Value; }
|
---|
185 | set { ThetaDeletionParameter.Value = value; }
|
---|
186 | }
|
---|
187 | public IntValue ThetaSubsumption {
|
---|
188 | get { return ThetaSubsumptionParameter.Value; }
|
---|
189 | set { ThetaSubsumptionParameter.Value = value; }
|
---|
190 | }
|
---|
191 | public PercentValue Delta {
|
---|
192 | get { return DeltaParameter.Value; }
|
---|
193 | set { DeltaParameter.Value = value; }
|
---|
194 | }
|
---|
195 | public PercentValue ExplorationProbability {
|
---|
196 | get { return ExplorationProbabilityParameter.Value; }
|
---|
197 | set { ExplorationProbabilityParameter.Value = value; }
|
---|
198 | }
|
---|
199 | public BoolValue DoGASubsumption {
|
---|
200 | get { return DoGASubsumptionParameter.Value; }
|
---|
201 | set { DoGASubsumptionParameter.Value = value; }
|
---|
202 | }
|
---|
203 | public BoolValue DoActionSetSubsumption {
|
---|
204 | get { return DoActionSetSubsumptionParameter.Value; }
|
---|
205 | set { DoActionSetSubsumptionParameter.Value = value; }
|
---|
206 | }
|
---|
207 | public IntValue MaxIterations {
|
---|
208 | get { return MaxIterationsParameter.Value; }
|
---|
209 | set { MaxIterationsParameter.Value = value; }
|
---|
210 | }
|
---|
211 | public MultiAnalyzer Analyzer {
|
---|
212 | get { return AnalyzerParameter.Value; }
|
---|
213 | set { AnalyzerParameter.Value = value; }
|
---|
214 | }
|
---|
215 | public MultiAnalyzer FinalAnalyzer {
|
---|
216 | get { return FinalAnalyzerParameter.Value; }
|
---|
217 | set { FinalAnalyzerParameter.Value = value; }
|
---|
218 | }
|
---|
219 | public ISelector Selector {
|
---|
220 | get { return SelectorParameter.Value; }
|
---|
221 | set { SelectorParameter.Value = value; }
|
---|
222 | }
|
---|
223 | public ICrossover Crossover {
|
---|
224 | get { return CrossoverParameter.Value; }
|
---|
225 | set { CrossoverParameter.Value = value; }
|
---|
226 | }
|
---|
227 | public IManipulator Mutator {
|
---|
228 | get { return MutatorParameter.Value; }
|
---|
229 | set { MutatorParameter.Value = value; }
|
---|
230 | }
|
---|
231 | private RandomCreator RandomCreator {
|
---|
232 | get { return (RandomCreator)OperatorGraph.InitialOperator; }
|
---|
233 | }
|
---|
234 | public LearningClassifierSystemMainLoop MainLoop {
|
---|
235 | get { return FindMainLoop(RandomCreator.Successor); }
|
---|
236 | }
|
---|
237 | #endregion
|
---|
238 |
|
---|
239 | public LearningClassifierSystem()
|
---|
240 | : base() {
|
---|
241 | #region Create parameters
|
---|
242 | Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
243 | Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
244 | Parameters.Add(new ValueParameter<BoolValue>("CreateInitialPopulation", "Specifies if a population should be created at the beginning of the algorithm.", new BoolValue(false)));
|
---|
245 | Parameters.Add(new ValueParameter<IntValue>("N", "Max size of the population of solutions.", new IntValue(100)));
|
---|
246 | Parameters.Add(new ValueParameter<PercentValue>("Beta", "Learning rate", new PercentValue(0.1)));
|
---|
247 | Parameters.Add(new ValueParameter<PercentValue>("Alpha", "", new PercentValue(0.1)));
|
---|
248 | Parameters.Add(new ValueParameter<DoubleValue>("ErrorZero", "The error below which classifiers are considered to have equal accuracy", new DoubleValue(10)));
|
---|
249 | Parameters.Add(new ValueParameter<DoubleValue>("v", "Power parameter", new DoubleValue(5)));
|
---|
250 | Parameters.Add(new ValueParameter<PercentValue>("Gamma", "Discount factor", new PercentValue(0.71)));
|
---|
251 | Parameters.Add(new ValueParameter<PercentValue>("CrossoverProbability", "Probability of crossover", new PercentValue(0.9)));
|
---|
252 | Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "Probability of mutation", new PercentValue(0.05)));
|
---|
253 | Parameters.Add(new ValueParameter<IntValue>("ThetaGA", "GA threshold. GA is applied in a set when the average time since the last GA is greater than ThetaGA.", new IntValue(25)));
|
---|
254 | Parameters.Add(new ValueParameter<IntValue>("ThetaDeletion", "Deletion threshold. If the experience of a classifier is greater than ThetaDeletion, its fitness may be considered in its probability of deletion.", new IntValue(20)));
|
---|
255 | Parameters.Add(new ValueParameter<IntValue>("ThetaSubsumption", "Subsumption threshold. The experience of a classifier must be greater than TheatSubsumption to be able to subsume another classifier.", new IntValue(20)));
|
---|
256 | Parameters.Add(new ValueParameter<PercentValue>("Delta", "Delta specifies the fraction of mean fitness in [P] below which the fitness of a classifier may be considered in its probability of deletion", new PercentValue(0.1)));
|
---|
257 | Parameters.Add(new ValueParameter<PercentValue>("ExplorationProbability", "Probability of selecting the action uniform randomly", new PercentValue(0.5)));
|
---|
258 | Parameters.Add(new ValueParameter<BoolValue>("DoGASubsumption", "Specifies if offsprings are tested for possible logical subsumption by parents.", new BoolValue(true)));
|
---|
259 | Parameters.Add(new ValueParameter<BoolValue>("DoActionSetSubsumption", "Specifies if action set is tested for subsuming classifiers.", new BoolValue(true)));
|
---|
260 | Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
|
---|
261 | Parameters.Add(new ValueParameter<MultiAnalyzer>("FinalAnalyzer", "The operator used to analyze the last generation.", new MultiAnalyzer()));
|
---|
262 | Parameters.Add(new ValueParameter<IntValue>("MaxIterations", "The maximum number of iterations.", new IntValue(1000)));
|
---|
263 | Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions."));
|
---|
264 | Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
|
---|
265 | Parameters.Add(new ConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
|
---|
266 | Parameters.Add(new ValueParameter<IntValue>("AnalyzeInIteration", "", new IntValue(50)));
|
---|
267 | #endregion
|
---|
268 |
|
---|
269 | #region Create operators
|
---|
270 | RandomCreator randomCreator = new RandomCreator();
|
---|
271 |
|
---|
272 | ResultsCollector resultsCollector = new ResultsCollector();
|
---|
273 | LearningClassifierSystemMainLoop mainLoop = new LearningClassifierSystemMainLoop();
|
---|
274 |
|
---|
275 | randomCreator.RandomParameter.ActualName = "Random";
|
---|
276 | randomCreator.SeedParameter.ActualName = SeedParameter.Name;
|
---|
277 | randomCreator.SeedParameter.Value = null;
|
---|
278 | randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
|
---|
279 | randomCreator.SetSeedRandomlyParameter.Value = null;
|
---|
280 |
|
---|
281 | resultsCollector.ResultsParameter.ActualName = "Results";
|
---|
282 |
|
---|
283 | mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
|
---|
284 | mainLoop.FinalAnalyzerParameter.ActualName = FinalAnalyzerParameter.Name;
|
---|
285 | mainLoop.MaxIterationsParameter.ActualName = MaxIterationsParameter.Name;
|
---|
286 | mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
|
---|
287 | mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
|
---|
288 | mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
|
---|
289 | mainLoop.CrossoverProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name;
|
---|
290 | mainLoop.AnalyzeInIterationParameter.ActualName = AnalyzeInIterationParameter.Name;
|
---|
291 | #endregion
|
---|
292 |
|
---|
293 | #region Create operator graph
|
---|
294 | OperatorGraph.InitialOperator = randomCreator;
|
---|
295 | randomCreator.Successor = resultsCollector;
|
---|
296 | resultsCollector.Successor = mainLoop;
|
---|
297 | #endregion
|
---|
298 |
|
---|
299 | UpdateAnalyzers();
|
---|
300 | }
|
---|
301 | private LearningClassifierSystem(LearningClassifierSystem original, Cloner cloner)
|
---|
302 | : base(original, cloner) {
|
---|
303 | }
|
---|
304 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
305 | return new LearningClassifierSystem(this, cloner);
|
---|
306 | }
|
---|
307 | [StorableConstructor]
|
---|
308 | private LearningClassifierSystem(bool deserializing) : base(deserializing) { }
|
---|
309 |
|
---|
310 | protected override void OnProblemChanged() {
|
---|
311 | if (Problem != null) {
|
---|
312 | ParameterizeEvaluator(Problem.Evaluator);
|
---|
313 | MainLoop.SetCurrentProblem(Problem);
|
---|
314 | UpdateSelectors();
|
---|
315 | UpdateCrossovers();
|
---|
316 | UpdateMutators();
|
---|
317 | UpdateAnalyzers();
|
---|
318 | ParameterizeSelectors();
|
---|
319 | ParameterizeManipulator();
|
---|
320 | }
|
---|
321 | base.OnProblemChanged();
|
---|
322 | }
|
---|
323 |
|
---|
324 | protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
|
---|
325 | ParameterizeEvaluator(Problem.Evaluator);
|
---|
326 | MainLoop.SetCurrentProblem(Problem);
|
---|
327 | base.Problem_EvaluatorChanged(sender, e);
|
---|
328 | }
|
---|
329 | protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
|
---|
330 | MainLoop.SetCurrentProblem(Problem);
|
---|
331 | base.Problem_SolutionCreatorChanged(sender, e);
|
---|
332 | }
|
---|
333 | protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
|
---|
334 | UpdateSelectors();
|
---|
335 | UpdateCrossovers();
|
---|
336 | UpdateMutators();
|
---|
337 | UpdateAnalyzers();
|
---|
338 | ParameterizeSelectors();
|
---|
339 | ParameterizeManipulator();
|
---|
340 | base.Problem_OperatorsChanged(sender, e);
|
---|
341 | }
|
---|
342 |
|
---|
343 | private void ParameterizeSelectors() {
|
---|
344 | foreach (ISelector selector in SelectorParameter.ValidValues) {
|
---|
345 | selector.CopySelected = new BoolValue(true);
|
---|
346 | selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(4);
|
---|
347 | selector.NumberOfSelectedSubScopesParameter.Hidden = true;
|
---|
348 | ParameterizeStochasticOperator(selector);
|
---|
349 | }
|
---|
350 | if (Problem != null) {
|
---|
351 | foreach (IXCSSelector selector in SelectorParameter.ValidValues.OfType<IXCSSelector>()) {
|
---|
352 | selector.NumerosityParameter.ActualName = Problem.Evaluator.NumerosityParameter.ActualName;
|
---|
353 | selector.NumerosityParameter.Hidden = true;
|
---|
354 | }
|
---|
355 | foreach (ISingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
|
---|
356 | selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
357 | selector.MaximizationParameter.Hidden = true;
|
---|
358 | selector.QualityParameter.ActualName = Problem.Evaluator.FitnessParameter.ActualName;
|
---|
359 | selector.QualityParameter.Hidden = true;
|
---|
360 | }
|
---|
361 | }
|
---|
362 | }
|
---|
363 | private void ParameterizeManipulator() {
|
---|
364 | foreach (var op in Problem.Operators.OfType<IProbabilityMutatorOperator>()) {
|
---|
365 | op.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
366 | }
|
---|
367 | }
|
---|
368 | private void ParameterizeEvaluator(IXCSEvaluator evaluator) {
|
---|
369 | evaluator.ActualTimeParameter.ActualName = "Iteration";
|
---|
370 | evaluator.BetaParameter.ActualName = BetaParameter.Name;
|
---|
371 | evaluator.AlphaParameter.ActualName = AlphaParameter.Name;
|
---|
372 | evaluator.PowerParameter.ActualName = PowerParameter.Name;
|
---|
373 | evaluator.ErrorZeroParameter.ActualName = ErrorZeroParameter.Name;
|
---|
374 | }
|
---|
375 | private void ParameterizeStochasticOperator(IOperator op) {
|
---|
376 | IStochasticOperator stochasticOp = op as IStochasticOperator;
|
---|
377 | if (stochasticOp != null) {
|
---|
378 | stochasticOp.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
|
---|
379 | stochasticOp.RandomParameter.Hidden = true;
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | private void UpdateSelectors() {
|
---|
384 | ISelector oldSelector = SelectorParameter.Value;
|
---|
385 | SelectorParameter.ValidValues.Clear();
|
---|
386 | ISelector defaultSelector = Problem.Operators.OfType<IXCSSelector>().FirstOrDefault();
|
---|
387 | if (defaultSelector == null) {
|
---|
388 | defaultSelector = Problem.Operators.OfType<ISelector>().FirstOrDefault();
|
---|
389 | }
|
---|
390 |
|
---|
391 | foreach (ISelector selector in Problem.Operators.OfType<ISelector>().OrderBy(x => x.Name))
|
---|
392 | SelectorParameter.ValidValues.Add(selector);
|
---|
393 |
|
---|
394 | if (oldSelector != null) {
|
---|
395 | ISelector selector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldSelector.GetType());
|
---|
396 | if (selector != null) SelectorParameter.Value = selector;
|
---|
397 | else oldSelector = null;
|
---|
398 | }
|
---|
399 | if (oldSelector == null && defaultSelector != null)
|
---|
400 | SelectorParameter.Value = defaultSelector;
|
---|
401 | }
|
---|
402 |
|
---|
403 | private void UpdateCrossovers() {
|
---|
404 | ICrossover oldCrossover = CrossoverParameter.Value;
|
---|
405 | CrossoverParameter.ValidValues.Clear();
|
---|
406 | ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
|
---|
407 |
|
---|
408 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
|
---|
409 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
410 |
|
---|
411 | if (oldCrossover != null) {
|
---|
412 | ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
|
---|
413 | if (crossover != null) CrossoverParameter.Value = crossover;
|
---|
414 | else oldCrossover = null;
|
---|
415 | }
|
---|
416 | if (oldCrossover == null && defaultCrossover != null)
|
---|
417 | CrossoverParameter.Value = defaultCrossover;
|
---|
418 | }
|
---|
419 | private void UpdateMutators() {
|
---|
420 | IManipulator oldMutator = MutatorParameter.Value;
|
---|
421 | MutatorParameter.ValidValues.Clear();
|
---|
422 | IManipulator defaultMutator = Problem.Operators.OfType<IManipulator>().FirstOrDefault();
|
---|
423 |
|
---|
424 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
|
---|
425 | MutatorParameter.ValidValues.Add(mutator);
|
---|
426 | if (oldMutator != null) {
|
---|
427 | IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
|
---|
428 | if (mutator != null) MutatorParameter.Value = mutator;
|
---|
429 | else oldMutator = null;
|
---|
430 | }
|
---|
431 | if (oldMutator == null && defaultMutator != null)
|
---|
432 | MutatorParameter.Value = defaultMutator;
|
---|
433 | }
|
---|
434 | private void UpdateAnalyzers() {
|
---|
435 | Analyzer.Operators.Clear();
|
---|
436 | FinalAnalyzer.Operators.Clear();
|
---|
437 | if (Problem != null) {
|
---|
438 | foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
439 | Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
440 | FinalAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
441 | }
|
---|
442 | }
|
---|
443 | }
|
---|
444 |
|
---|
445 | private LearningClassifierSystemMainLoop FindMainLoop(IOperator start) {
|
---|
446 | IOperator mainLoop = start;
|
---|
447 | while (mainLoop != null && !(mainLoop is LearningClassifierSystemMainLoop))
|
---|
448 | mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
|
---|
449 | if (mainLoop == null) return null;
|
---|
450 | else return (LearningClassifierSystemMainLoop)mainLoop;
|
---|
451 | }
|
---|
452 | }
|
---|
453 | }
|
---|