1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 |
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.ConditionActionEncoding;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Optimization.Operators;
|
---|
29 | using HeuristicLab.Optimization.Operators.LCS;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Selection;
|
---|
33 | namespace HeuristicLab.Algorithms.LearningClassifierSystems {
|
---|
34 | /// <summary>
|
---|
35 | /// An operator which represents the main loop of a genetic algorithm.
|
---|
36 | /// </summary>
|
---|
37 | [Item("LCSAdaptedGeneticAlgorithm", "An operator which represents the main loop of a genetic algorithm, which has been adapdet for learning classifier systems.")]
|
---|
38 | [StorableClass]
|
---|
39 | public sealed class LCSAdaptedGeneticAlgorithm : AlgorithmOperator {
|
---|
40 | private const string TEMPID = "TempID";
|
---|
41 | private const string SUBSUMEDBY = "SubsumedBy";
|
---|
42 | private const string SUBSUMED = "Subsumed";
|
---|
43 |
|
---|
44 | #region Parameter properties
|
---|
45 | public ValueLookupParameter<IRandom> RandomParameter {
|
---|
46 | get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
|
---|
47 | }
|
---|
48 | public ValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
49 | get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
50 | }
|
---|
51 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
52 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
53 | }
|
---|
54 | public ValueLookupParameter<IOperator> SelectorParameter {
|
---|
55 | get { return (ValueLookupParameter<IOperator>)Parameters["Selector"]; }
|
---|
56 | }
|
---|
57 | public ValueLookupParameter<IOperator> AfterCopyingParentsParameter {
|
---|
58 | get { return (ValueLookupParameter<IOperator>)Parameters["AfterCopyingParents"]; }
|
---|
59 | }
|
---|
60 | public ValueLookupParameter<IOperator> CrossoverParameter {
|
---|
61 | get { return (ValueLookupParameter<IOperator>)Parameters["Crossover"]; }
|
---|
62 | }
|
---|
63 | public ValueLookupParameter<IOperator> AfterCrossoverParameter {
|
---|
64 | get { return (ValueLookupParameter<IOperator>)Parameters["AfterCrossover"]; }
|
---|
65 | }
|
---|
66 | public ValueLookupParameter<PercentValue> MutationProbabilityParameter {
|
---|
67 | get { return (ValueLookupParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
68 | }
|
---|
69 | public ValueLookupParameter<PercentValue> CrossoverProbabilityParameter {
|
---|
70 | get { return (ValueLookupParameter<PercentValue>)Parameters["CrossoverProbability"]; }
|
---|
71 | }
|
---|
72 | public ValueLookupParameter<IOperator> MutatorParameter {
|
---|
73 | get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
|
---|
74 | }
|
---|
75 | public ValueLookupParameter<IntValue> MaximumGenerationsParameter {
|
---|
76 | get { return (ValueLookupParameter<IntValue>)Parameters["MaximumGenerations"]; }
|
---|
77 | }
|
---|
78 | public ValueLookupParameter<VariableCollection> ResultsParameter {
|
---|
79 | get { return (ValueLookupParameter<VariableCollection>)Parameters["Results"]; }
|
---|
80 | }
|
---|
81 | public ValueLookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
82 | get { return (ValueLookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
83 | }
|
---|
84 | public ValueLookupParameter<IntValue> PopulationSizeParameter {
|
---|
85 | get { return (ValueLookupParameter<IntValue>)Parameters["PopulationSize"]; }
|
---|
86 | }
|
---|
87 | public ValueLookupParameter<BoolValue> DoGASubsumptionParameter {
|
---|
88 | get { return (ValueLookupParameter<BoolValue>)Parameters["DoGASubsumption"]; }
|
---|
89 | }
|
---|
90 | private ScopeParameter CurrentScopeParameter {
|
---|
91 | get { return (ScopeParameter)Parameters["CurrentScope"]; }
|
---|
92 | }
|
---|
93 |
|
---|
94 | public IScope CurrentScope {
|
---|
95 | get { return CurrentScopeParameter.ActualValue; }
|
---|
96 | }
|
---|
97 | #endregion
|
---|
98 |
|
---|
99 | private CheckGASubsumptionOperator checkGASubsumptionOperator;
|
---|
100 |
|
---|
101 | [StorableConstructor]
|
---|
102 | private LCSAdaptedGeneticAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
103 | private LCSAdaptedGeneticAlgorithm(LCSAdaptedGeneticAlgorithm original, Cloner cloner)
|
---|
104 | : base(original, cloner) {
|
---|
105 | }
|
---|
106 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
107 | return new LCSAdaptedGeneticAlgorithm(this, cloner);
|
---|
108 | }
|
---|
109 | public LCSAdaptedGeneticAlgorithm()
|
---|
110 | : base() {
|
---|
111 | Initialize();
|
---|
112 | }
|
---|
113 |
|
---|
114 | private void Initialize() {
|
---|
115 | #region Create parameters
|
---|
116 | Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
|
---|
117 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
|
---|
118 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
|
---|
119 | Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
|
---|
120 | Parameters.Add(new ValueLookupParameter<IOperator>("AfterCopyingParents", "The operator executed after copying a parent instead of using crossover."));
|
---|
121 | Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
|
---|
122 | Parameters.Add(new ValueLookupParameter<IOperator>("AfterCrossover", "The operator executed after crossing the solutions."));
|
---|
123 | Parameters.Add(new ValueLookupParameter<PercentValue>("CrossoverProbability", "The probability that the crossover operator is applied on a solution."));
|
---|
124 | Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that druing the mutation operator a mutation takes place."));
|
---|
125 | Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
|
---|
126 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
|
---|
127 | Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
|
---|
128 | Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
|
---|
129 | Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population."));
|
---|
130 | Parameters.Add(new ValueLookupParameter<BoolValue>("DoGASubsumption", "Sets if GA subsumption is executed."));
|
---|
131 | Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
|
---|
132 | #endregion
|
---|
133 |
|
---|
134 | #region Create operators
|
---|
135 | VariableCreator variableCreator = new VariableCreator();
|
---|
136 | ResultsCollector resultsCollector1 = new ResultsCollector();
|
---|
137 | Placeholder selector = new Placeholder();
|
---|
138 | SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
|
---|
139 | ChildrenCreator childrenCreator = new ChildrenCreator();
|
---|
140 | UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
|
---|
141 | StochasticBranch crossoverStochasticBranch = new StochasticBranch();
|
---|
142 | RandomSelector randomSelector = new RandomSelector();
|
---|
143 | PreservingRightReducer preservingRightReducer = new PreservingRightReducer();
|
---|
144 | Placeholder afterCopyingParents = new Placeholder();
|
---|
145 | Placeholder crossover = new Placeholder();
|
---|
146 | Placeholder afterCrossover = new Placeholder();
|
---|
147 | Placeholder mutator = new Placeholder();
|
---|
148 | SubScopesRemover subScopesRemover = new SubScopesRemover();
|
---|
149 | SubScopesCounter subScopesCounter = new SubScopesCounter();
|
---|
150 | MergingReducer mergingReducer = new MergingReducer();
|
---|
151 | IntCounter intCounter = new IntCounter();
|
---|
152 | Comparator comparator = new Comparator();
|
---|
153 | ConditionalBranch conditionalBranch = new ConditionalBranch();
|
---|
154 |
|
---|
155 | TempSubScopeIDAssigner tempIdAssigner = new TempSubScopeIDAssigner();
|
---|
156 | ConditionalBranch doGASubsumptionBranch1 = new ConditionalBranch();
|
---|
157 | UniformSubScopesProcessor setSubsumptionFalseSubScopesProcessor = new UniformSubScopesProcessor();
|
---|
158 | Assigner setSubsumpByAssigner = new Assigner();
|
---|
159 | Assigner setSubsumptionFalseAssigner = new Assigner();
|
---|
160 | checkGASubsumptionOperator = new CheckGASubsumptionOperator();
|
---|
161 | ConditionalBranch doGASubsumptionBranch2 = new ConditionalBranch();
|
---|
162 | ExecuteGASubsumptionOperator executeGAsubsumptionOperator = new ExecuteGASubsumptionOperator();
|
---|
163 | ConditionalSelector subsumptionSelector = new ConditionalSelector();
|
---|
164 | LeftReducer subsumptionLeftReducer = new LeftReducer();
|
---|
165 |
|
---|
166 | variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class GeneticAlgorithm expects this to be called Generations
|
---|
167 |
|
---|
168 | //resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Iterations"));
|
---|
169 | resultsCollector1.ResultsParameter.ActualName = "Results";
|
---|
170 |
|
---|
171 | tempIdAssigner.LeftSideParameter.ActualName = TEMPID;
|
---|
172 |
|
---|
173 | setSubsumpByAssigner.LeftSideParameter.ActualName = SUBSUMEDBY;
|
---|
174 | setSubsumpByAssigner.RightSideParameter.Value = new IntValue(-1);
|
---|
175 |
|
---|
176 | setSubsumptionFalseAssigner.LeftSideParameter.ActualName = SUBSUMED;
|
---|
177 | setSubsumptionFalseAssigner.RightSideParameter.Value = new BoolValue(false);
|
---|
178 |
|
---|
179 | selector.Name = "Selector";
|
---|
180 | selector.OperatorParameter.ActualName = "Selector";
|
---|
181 |
|
---|
182 | childrenCreator.ParentsPerChild = new IntValue(2);
|
---|
183 |
|
---|
184 | crossoverStochasticBranch.ProbabilityParameter.ActualName = CrossoverProbabilityParameter.ActualName;
|
---|
185 | crossoverStochasticBranch.RandomParameter.ActualName = "Random";
|
---|
186 |
|
---|
187 | randomSelector.CopySelected.Value = true;
|
---|
188 | randomSelector.NumberOfSelectedSubScopesParameter.Value = new IntValue(1);
|
---|
189 |
|
---|
190 | afterCopyingParents.Name = "AfterCopyingParents";
|
---|
191 | afterCopyingParents.OperatorParameter.ActualName = "AfterCopyingParents";
|
---|
192 |
|
---|
193 | crossover.Name = "Crossover";
|
---|
194 | crossover.OperatorParameter.ActualName = "Crossover";
|
---|
195 |
|
---|
196 | afterCrossover.Name = "AfterCrossover";
|
---|
197 | afterCrossover.OperatorParameter.ActualName = "AfterCrossover";
|
---|
198 |
|
---|
199 | mutator.Name = "Mutator";
|
---|
200 | mutator.OperatorParameter.ActualName = "Mutator";
|
---|
201 |
|
---|
202 | doGASubsumptionBranch1.ConditionParameter.ActualName = DoGASubsumptionParameter.ActualName;
|
---|
203 |
|
---|
204 | checkGASubsumptionOperator.NumerositiesParameter.ActualName = "Numerosity";
|
---|
205 | checkGASubsumptionOperator.ExperiencesParameter.ActualName = "Experience";
|
---|
206 | checkGASubsumptionOperator.ErrorsParameter.ActualName = "Error";
|
---|
207 | checkGASubsumptionOperator.TempIDParameter.ActualName = TEMPID;
|
---|
208 | checkGASubsumptionOperator.ErrorZeroParameter.ActualName = "ErrorZero";
|
---|
209 | checkGASubsumptionOperator.ThetaSubsumptionParameter.ActualName = "ThetaSubsumption";
|
---|
210 | checkGASubsumptionOperator.SubsumedByParameter.ActualName = SUBSUMEDBY;
|
---|
211 | checkGASubsumptionOperator.SubsumedParameter.ActualName = SUBSUMED;
|
---|
212 |
|
---|
213 | subScopesRemover.RemoveAllSubScopes = true;
|
---|
214 |
|
---|
215 | doGASubsumptionBranch2.ConditionParameter.ActualName = DoGASubsumptionParameter.ActualName;
|
---|
216 |
|
---|
217 | executeGAsubsumptionOperator.NumerositiesParameter.ActualName = "Numerosity";
|
---|
218 | executeGAsubsumptionOperator.TempIDParameter.ActualName = TEMPID;
|
---|
219 | executeGAsubsumptionOperator.SubsumedByParameter.ActualName = SUBSUMEDBY;
|
---|
220 |
|
---|
221 | subsumptionSelector.ConditionParameter.ActualName = SUBSUMED;
|
---|
222 | subsumptionSelector.CopySelected = new BoolValue(false);
|
---|
223 |
|
---|
224 | subScopesCounter.Name = "Increment EvaluatedSolutions";
|
---|
225 | subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
226 |
|
---|
227 | intCounter.Increment = new IntValue(1);
|
---|
228 | intCounter.ValueParameter.ActualName = "Generations";
|
---|
229 |
|
---|
230 | comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
|
---|
231 | comparator.LeftSideParameter.ActualName = "Generations";
|
---|
232 | comparator.ResultParameter.ActualName = "Terminate";
|
---|
233 | comparator.RightSideParameter.ActualName = "MaximumGenerations";
|
---|
234 |
|
---|
235 | conditionalBranch.ConditionParameter.ActualName = "Terminate";
|
---|
236 | #endregion
|
---|
237 |
|
---|
238 | #region Create operator graph
|
---|
239 | OperatorGraph.InitialOperator = variableCreator;
|
---|
240 | variableCreator.Successor = resultsCollector1;
|
---|
241 | resultsCollector1.Successor = tempIdAssigner;
|
---|
242 | tempIdAssigner.Successor = setSubsumptionFalseSubScopesProcessor;
|
---|
243 | setSubsumptionFalseSubScopesProcessor.Operator = setSubsumpByAssigner;
|
---|
244 | setSubsumpByAssigner.Successor = setSubsumptionFalseAssigner;
|
---|
245 | setSubsumptionFalseAssigner.Successor = null;
|
---|
246 | setSubsumptionFalseSubScopesProcessor.Successor = selector;
|
---|
247 | selector.Successor = subScopesProcessor1;
|
---|
248 | subScopesProcessor1.Operators.Add(new EmptyOperator());
|
---|
249 | subScopesProcessor1.Operators.Add(childrenCreator);
|
---|
250 | subScopesProcessor1.Successor = mergingReducer;
|
---|
251 | childrenCreator.Successor = uniformSubScopesProcessor1;
|
---|
252 | uniformSubScopesProcessor1.Operator = crossoverStochasticBranch;
|
---|
253 | uniformSubScopesProcessor1.Successor = subScopesCounter;
|
---|
254 | crossoverStochasticBranch.FirstBranch = crossover;
|
---|
255 | crossoverStochasticBranch.SecondBranch = randomSelector;
|
---|
256 | randomSelector.Successor = preservingRightReducer;
|
---|
257 | preservingRightReducer.Successor = afterCopyingParents;
|
---|
258 | crossoverStochasticBranch.Successor = mutator;
|
---|
259 | crossover.Successor = afterCrossover;
|
---|
260 | mutator.Successor = doGASubsumptionBranch1;
|
---|
261 | doGASubsumptionBranch1.TrueBranch = checkGASubsumptionOperator;
|
---|
262 | doGASubsumptionBranch1.FalseBranch = new EmptyOperator();
|
---|
263 | doGASubsumptionBranch1.Successor = subScopesRemover;
|
---|
264 | subScopesRemover.Successor = null;
|
---|
265 | subScopesCounter.Successor = null;
|
---|
266 | mergingReducer.Successor = doGASubsumptionBranch2;
|
---|
267 | doGASubsumptionBranch2.TrueBranch = executeGAsubsumptionOperator;
|
---|
268 | doGASubsumptionBranch2.FalseBranch = new EmptyOperator();
|
---|
269 | executeGAsubsumptionOperator.Successor = subsumptionSelector;
|
---|
270 | subsumptionSelector.Successor = subsumptionLeftReducer;
|
---|
271 | subsumptionLeftReducer.Successor = null;
|
---|
272 | doGASubsumptionBranch2.Successor = intCounter;
|
---|
273 | intCounter.Successor = comparator;
|
---|
274 | comparator.Successor = conditionalBranch;
|
---|
275 | conditionalBranch.FalseBranch = selector;
|
---|
276 | conditionalBranch.TrueBranch = null;
|
---|
277 | conditionalBranch.Successor = null;
|
---|
278 | #endregion
|
---|
279 | }
|
---|
280 |
|
---|
281 | public override IOperation Apply() {
|
---|
282 | if (CrossoverParameter.ActualValue == null)
|
---|
283 | return null;
|
---|
284 | return base.Apply();
|
---|
285 | }
|
---|
286 |
|
---|
287 | public void SetChildName(string childName) {
|
---|
288 | checkGASubsumptionOperator.ChildClassifiersParameter.ActualName = childName;
|
---|
289 | checkGASubsumptionOperator.ParentsClassifiersParameter.ActualName = childName;
|
---|
290 | }
|
---|
291 | }
|
---|
292 | }
|
---|