1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | [StorableClass]
|
---|
33 | [Item(Name = "CovarianceRationalQuadraticArd",
|
---|
34 | Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")]
|
---|
35 | public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction {
|
---|
36 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
37 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | public IValueParameter<DoubleArray> InverseLengthParameter {
|
---|
41 | get { return (IValueParameter<DoubleArray>)Parameters["InverseLength"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IValueParameter<DoubleValue> ShapeParameter {
|
---|
45 | get { return (IValueParameter<DoubleValue>)Parameters["Shape"]; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | [StorableConstructor]
|
---|
49 | private CovarianceRationalQuadraticArd(bool deserializing)
|
---|
50 | : base(deserializing) {
|
---|
51 | }
|
---|
52 |
|
---|
53 | private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner)
|
---|
54 | : base(original, cloner) {
|
---|
55 | }
|
---|
56 |
|
---|
57 | public CovarianceRationalQuadraticArd()
|
---|
58 | : base() {
|
---|
59 | Name = ItemName;
|
---|
60 | Description = ItemDescription;
|
---|
61 |
|
---|
62 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the rational quadratic covariance function with ARD."));
|
---|
63 | Parameters.Add(new OptionalValueParameter<DoubleArray>("InverseLength", "The inverse length parameter for automatic relevance determination."));
|
---|
64 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Shape", "The shape parameter (alpha) of the rational quadratic covariance function with ARD."));
|
---|
65 | }
|
---|
66 |
|
---|
67 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
68 | return new CovarianceRationalQuadraticArd(this, cloner);
|
---|
69 | }
|
---|
70 |
|
---|
71 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
72 | return
|
---|
73 | (ScaleParameter.Value != null ? 0 : 1) +
|
---|
74 | (ShapeParameter.Value != null ? 0 : 1) +
|
---|
75 | (InverseLengthParameter.Value != null ? 0 : numberOfVariables);
|
---|
76 | }
|
---|
77 |
|
---|
78 | public void SetParameter(double[] p) {
|
---|
79 | double scale, shape;
|
---|
80 | double[] inverseLength;
|
---|
81 | GetParameterValues(p, out scale, out shape, out inverseLength);
|
---|
82 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
83 | ShapeParameter.Value = new DoubleValue(shape);
|
---|
84 | InverseLengthParameter.Value = new DoubleArray(inverseLength);
|
---|
85 | }
|
---|
86 |
|
---|
87 | private void GetParameterValues(double[] p, out double scale, out double shape, out double[] inverseLength) {
|
---|
88 | int c = 0;
|
---|
89 | // gather parameter values
|
---|
90 | if (InverseLengthParameter.Value != null) {
|
---|
91 | inverseLength = InverseLengthParameter.Value.ToArray();
|
---|
92 | } else {
|
---|
93 | int length = p.Length;
|
---|
94 | if (ScaleParameter.Value == null) length--;
|
---|
95 | if (ShapeParameter.Value == null) length--;
|
---|
96 | inverseLength = p.Select(e => 1.0 / Math.Exp(e)).Take(length).ToArray();
|
---|
97 | c += inverseLength.Length;
|
---|
98 | }
|
---|
99 | if (ScaleParameter.Value != null) {
|
---|
100 | scale = ScaleParameter.Value.Value;
|
---|
101 | } else {
|
---|
102 | scale = Math.Exp(2 * p[c]);
|
---|
103 | c++;
|
---|
104 | }
|
---|
105 | if (ShapeParameter.Value != null) {
|
---|
106 | shape = ShapeParameter.Value.Value;
|
---|
107 | } else {
|
---|
108 | shape = Math.Exp(p[c]);
|
---|
109 | c++;
|
---|
110 | }
|
---|
111 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "p");
|
---|
112 | }
|
---|
113 |
|
---|
114 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
115 | double scale, shape;
|
---|
116 | double[] inverseLength;
|
---|
117 | GetParameterValues(p, out scale, out shape, out inverseLength);
|
---|
118 | // create functions
|
---|
119 | var cov = new ParameterizedCovarianceFunction();
|
---|
120 | cov.Covariance = (x, i, j) => {
|
---|
121 | double d = i == j
|
---|
122 | ? 0.0
|
---|
123 | : Util.SqrDist(x, i, j, inverseLength, columnIndices);
|
---|
124 | return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
|
---|
125 | };
|
---|
126 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
127 | double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices);
|
---|
128 | return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
|
---|
129 | };
|
---|
130 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, shape, inverseLength);
|
---|
131 | return cov;
|
---|
132 | }
|
---|
133 |
|
---|
134 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices, double scale, double shape, double[] inverseLength) {
|
---|
135 | double d = i == j
|
---|
136 | ? 0.0
|
---|
137 | : Util.SqrDist(x, i, j, inverseLength, columnIndices);
|
---|
138 | double b = 1 + 0.5 * d / shape;
|
---|
139 | int k = 0;
|
---|
140 | foreach (var columnIndex in columnIndices) {
|
---|
141 | yield return scale * Math.Pow(b, -shape - 1) * Util.SqrDist(x[i, columnIndex] * inverseLength[k], x[j, columnIndex] * inverseLength[k]);
|
---|
142 | k++;
|
---|
143 | }
|
---|
144 | yield return 2 * scale * Math.Pow(b, -shape);
|
---|
145 | yield return scale * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b));
|
---|
146 | }
|
---|
147 | }
|
---|
148 | }
|
---|