Free cookie consent management tool by TermsFeed Policy Generator

source: branches/LearningClassifierSystems/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceProduct.cs @ 17869

Last change on this file since 17869 was 8982, checked in by gkronber, 12 years ago

#1902: removed class HyperParameter and changed implementations of covariance and mean functions to remove the parameter value caching and event handlers for parameter caching. Instead it is now possible to create the actual covariance and mean functions as Func from templates and specified parameter values. The instances of mean and covariance functions configured in the GUI are actually templates where the structure and fixed parameters can be specified.

File size: 4.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Linq.Expressions;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Algorithms.DataAnalysis {
31  [StorableClass]
32  [Item(Name = "CovarianceProduct",
33    Description = "Product covariance function for Gaussian processes.")]
34  public sealed class CovarianceProduct : Item, ICovarianceFunction {
35    [Storable]
36    private ItemList<ICovarianceFunction> factors;
37
38    [Storable]
39    private int numberOfVariables;
40    public ItemList<ICovarianceFunction> Factors {
41      get { return factors; }
42    }
43
44    [StorableConstructor]
45    private CovarianceProduct(bool deserializing)
46      : base(deserializing) {
47    }
48
49    private CovarianceProduct(CovarianceProduct original, Cloner cloner)
50      : base(original, cloner) {
51      this.factors = cloner.Clone(original.factors);
52      this.numberOfVariables = original.numberOfVariables;
53    }
54
55    public CovarianceProduct()
56      : base() {
57      this.factors = new ItemList<ICovarianceFunction>();
58    }
59
60    public override IDeepCloneable Clone(Cloner cloner) {
61      return new CovarianceProduct(this, cloner);
62    }
63
64    public int GetNumberOfParameters(int numberOfVariables) {
65      this.numberOfVariables = numberOfVariables;
66      return factors.Select(f => f.GetNumberOfParameters(numberOfVariables)).Sum();
67    }
68
69    public void SetParameter(double[] p) {
70      int offset = 0;
71      foreach (var f in factors) {
72        var numberOfParameters = f.GetNumberOfParameters(numberOfVariables);
73        f.SetParameter(p.Skip(offset).Take(numberOfParameters).ToArray());
74        offset += numberOfParameters;
75      }
76    }
77
78    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
79      if (factors.Count == 0) throw new ArgumentException("at least one factor is necessary for the product covariance function.");
80      var functions = new List<ParameterizedCovarianceFunction>();
81      foreach (var f in factors) {
82        int numberOfParameters = f.GetNumberOfParameters(numberOfVariables);
83        functions.Add(f.GetParameterizedCovarianceFunction(p.Take(numberOfParameters).ToArray(), columnIndices));
84        p = p.Skip(numberOfParameters).ToArray();
85      }
86
87
88      var product = new ParameterizedCovarianceFunction();
89      product.Covariance = (x, i, j) => functions.Select(e => e.Covariance(x, i, j)).Aggregate((a, b) => a * b);
90      product.CrossCovariance = (x, xt, i, j) => functions.Select(e => e.CrossCovariance(x, xt, i, j)).Aggregate((a, b) => a * b);
91      product.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, functions);
92      return product;
93    }
94
95    public static IEnumerable<double> GetGradient(double[,] x, int i, int j, List<ParameterizedCovarianceFunction> factorFunctions) {
96      var covariances = factorFunctions.Select(f => f.Covariance(x, i, j)).ToArray();
97      for (int ii = 0; ii < factorFunctions.Count; ii++) {
98        foreach (var g in factorFunctions[ii].CovarianceGradient(x, i, j)) {
99          double res = g;
100          for (int jj = 0; jj < covariances.Length; jj++)
101            if (ii != jj) res *= covariances[jj];
102          yield return res;
103        }
104      }
105    }
106  }
107}
Note: See TracBrowser for help on using the repository browser.