Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HiveProjectManagement/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/RegressionTreeModel.cs @ 15529

Last change on this file since 15529 was 15105, checked in by gkronber, 8 years ago

#2690 added a model view for GBT models and renamed the existing evaluation view accordingly. Deleted GBT solution view because it is not necessary anymore.

File size: 11.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 * and the BEACON Center for the Study of Evolution in Action.
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21#endregion
22
23using System;
24using System.Collections.Generic;
25using System.Collections.ObjectModel;
26using System.Globalization;
27using System.Linq;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Problems.DataAnalysis;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
35
36namespace HeuristicLab.Algorithms.DataAnalysis {
37  [StorableClass]
38  [Item("RegressionTreeModel", "Represents a decision tree for regression.")]
39  public sealed class RegressionTreeModel : RegressionModel {
40    public override IEnumerable<string> VariablesUsedForPrediction {
41      get { return tree.Select(t => t.VarName).Where(v => v != TreeNode.NO_VARIABLE); }
42    }
43
44    // trees are represented as a flat array   
45    internal struct TreeNode {
46      public readonly static string NO_VARIABLE = null;
47
48      public TreeNode(string varName, double val, int leftIdx = -1, int rightIdx = -1, double weightLeft = -1.0)
49        : this() {
50        VarName = varName;
51        Val = val;
52        LeftIdx = leftIdx;
53        RightIdx = rightIdx;
54        WeightLeft = weightLeft;
55      }
56
57      public string VarName { get; internal set; } // name of the variable for splitting or NO_VARIABLE if terminal node
58      public double Val { get; internal set; } // threshold
59      public int LeftIdx { get; internal set; }
60      public int RightIdx { get; internal set; }
61      public double WeightLeft { get; internal set; } // for partial dependence plots (value in range [0..1] describes the fraction of training samples for the left sub-tree
62
63
64      // necessary because the default implementation of GetHashCode for structs in .NET would only return the hashcode of val here
65      public override int GetHashCode() {
66        return LeftIdx ^ RightIdx ^ Val.GetHashCode();
67      }
68      // necessary because of GetHashCode override
69      public override bool Equals(object obj) {
70        if (obj is TreeNode) {
71          var other = (TreeNode)obj;
72          return Val.Equals(other.Val) &&
73            LeftIdx.Equals(other.LeftIdx) &&
74            RightIdx.Equals(other.RightIdx) &&
75            WeightLeft.Equals(other.WeightLeft) &&
76            EqualStrings(VarName, other.VarName);
77        } else {
78          return false;
79        }
80      }
81
82      private bool EqualStrings(string a, string b) {
83        return (a == null && b == null) ||
84               (a != null && b != null && a.Equals(b));
85      }
86    }
87
88    // not storable!
89    private TreeNode[] tree;
90
91    #region old storable format
92    // remove with HL 3.4
93    [Storable(AllowOneWay = true)]
94    // to prevent storing the references to data caches in nodes
95    // seemingly, it is bad (performance-wise) to persist tuples (tuples are used as keys in a dictionary)
96    private Tuple<string, double, int, int>[] SerializedTree {
97      // get { return tree.Select(t => Tuple.Create(t.VarName, t.Val, t.LeftIdx, t.RightIdx)).ToArray(); }
98      set { this.tree = value.Select(t => new TreeNode(t.Item1, t.Item2, t.Item3, t.Item4, -1.0)).ToArray(); } // use a weight of -1.0 to indicate that partial dependence cannot be calculated for old models
99    }
100    #endregion
101    #region new storable format
102    [Storable]
103    private string[] SerializedTreeVarNames {
104      get { return tree.Select(t => t.VarName).ToArray(); }
105      set {
106        if (tree == null) tree = new TreeNode[value.Length];
107        for (int i = 0; i < value.Length; i++) {
108          tree[i].VarName = value[i];
109        }
110      }
111    }
112    [Storable]
113    private double[] SerializedTreeValues {
114      get { return tree.Select(t => t.Val).ToArray(); }
115      set {
116        if (tree == null) tree = new TreeNode[value.Length];
117        for (int i = 0; i < value.Length; i++) {
118          tree[i].Val = value[i];
119        }
120      }
121    }
122    [Storable]
123    private int[] SerializedTreeLeftIdx {
124      get { return tree.Select(t => t.LeftIdx).ToArray(); }
125      set {
126        if (tree == null) tree = new TreeNode[value.Length];
127        for (int i = 0; i < value.Length; i++) {
128          tree[i].LeftIdx = value[i];
129        }
130      }
131    }
132    [Storable]
133    private int[] SerializedTreeRightIdx {
134      get { return tree.Select(t => t.RightIdx).ToArray(); }
135      set {
136        if (tree == null) tree = new TreeNode[value.Length];
137        for (int i = 0; i < value.Length; i++) {
138          tree[i].RightIdx = value[i];
139        }
140      }
141    }
142    [Storable]
143    private double[] SerializedTreeWeightLeft {
144      get { return tree.Select(t => t.WeightLeft).ToArray(); }
145      set {
146        if (tree == null) tree = new TreeNode[value.Length];
147        for (int i = 0; i < value.Length; i++) {
148          tree[i].WeightLeft = value[i];
149        }
150      }
151    }
152    #endregion
153
154    [StorableConstructor]
155    private RegressionTreeModel(bool serializing) : base(serializing) { }
156    // cloning ctor
157    private RegressionTreeModel(RegressionTreeModel original, Cloner cloner)
158      : base(original, cloner) {
159      if (original.tree != null) {
160        this.tree = new TreeNode[original.tree.Length];
161        Array.Copy(original.tree, this.tree, this.tree.Length);
162      }
163    }
164
165    internal RegressionTreeModel(TreeNode[] tree, string targetVariable)
166      : base(targetVariable, "RegressionTreeModel", "Represents a decision tree for regression.") {
167      this.tree = tree;
168    }
169
170    private static double GetPredictionForRow(TreeNode[] t, ReadOnlyCollection<double>[] columnCache, int nodeIdx, int row) {
171      while (nodeIdx != -1) {
172        var node = t[nodeIdx];
173        if (node.VarName == TreeNode.NO_VARIABLE)
174          return node.Val;
175        if (columnCache[nodeIdx] == null || double.IsNaN(columnCache[nodeIdx][row])) {
176          if (node.WeightLeft.IsAlmost(-1.0)) throw new InvalidOperationException("Cannot calculate partial dependence for trees loaded from older versions of HeuristicLab.");
177          // weighted average for partial dependence plot (recursive here because we need to calculate both sub-trees)
178          return node.WeightLeft * GetPredictionForRow(t, columnCache, node.LeftIdx, row) +
179                 (1.0 - node.WeightLeft) * GetPredictionForRow(t, columnCache, node.RightIdx, row);
180        } else if (columnCache[nodeIdx][row] <= node.Val)
181          nodeIdx = node.LeftIdx;
182        else
183          nodeIdx = node.RightIdx;
184      }
185      throw new InvalidOperationException("Invalid tree in RegressionTreeModel");
186    }
187
188    public override IDeepCloneable Clone(Cloner cloner) {
189      return new RegressionTreeModel(this, cloner);
190    }
191
192    public override IEnumerable<double> GetEstimatedValues(IDataset ds, IEnumerable<int> rows) {
193      // lookup columns for variableNames in one pass over the tree to speed up evaluation later on
194      ReadOnlyCollection<double>[] columnCache = new ReadOnlyCollection<double>[tree.Length];
195
196      for (int i = 0; i < tree.Length; i++) {
197        if (tree[i].VarName != TreeNode.NO_VARIABLE) {
198          // tree models also support calculating estimations if not all variables used for training are available in the dataset
199          if (ds.ColumnNames.Contains(tree[i].VarName))
200            columnCache[i] = ds.GetReadOnlyDoubleValues(tree[i].VarName);
201        }
202      }
203      return rows.Select(r => GetPredictionForRow(tree, columnCache, 0, r));
204    }
205
206    public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
207      return new RegressionSolution(this, new RegressionProblemData(problemData));
208    }
209
210    // mainly for debugging
211    public override string ToString() {
212      return TreeToString(0, "");
213    }
214
215    /// <summary>
216    /// Transforms the tree model to a symbolic regression solution
217    /// </summary>
218    /// <param name="problemData"></param>
219    /// <returns>A new symbolic regression solution which matches the tree model</returns>
220    public ISymbolicRegressionSolution CreateSymbolicRegressionSolution(IRegressionProblemData problemData) {
221      return CreateSymbolicRegressionModel().CreateRegressionSolution(problemData);
222    }
223
224    /// <summary>
225    /// Transforms the tree model to a symbolic regression model
226    /// </summary>
227    /// <returns>A new symbolic regression model which matches the tree model</returns>
228    public SymbolicRegressionModel CreateSymbolicRegressionModel() {
229      var rootSy = new ProgramRootSymbol();
230      var startSy = new StartSymbol();
231      var varCondSy = new VariableCondition() { IgnoreSlope = true };
232      var constSy = new Constant();
233
234      var startNode = startSy.CreateTreeNode();
235      startNode.AddSubtree(CreateSymbolicRegressionTreeRecursive(tree, 0, varCondSy, constSy));
236      var rootNode = rootSy.CreateTreeNode();
237      rootNode.AddSubtree(startNode);
238      return new SymbolicRegressionModel(TargetVariable, new SymbolicExpressionTree(rootNode), new SymbolicDataAnalysisExpressionTreeLinearInterpreter());
239    }
240
241    private ISymbolicExpressionTreeNode CreateSymbolicRegressionTreeRecursive(TreeNode[] treeNodes, int nodeIdx, VariableCondition varCondSy, Constant constSy) {
242      var curNode = treeNodes[nodeIdx];
243      if (curNode.VarName == TreeNode.NO_VARIABLE) {
244        var node = (ConstantTreeNode)constSy.CreateTreeNode();
245        node.Value = curNode.Val;
246        return node;
247      } else {
248        var node = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
249        node.VariableName = curNode.VarName;
250        node.Threshold = curNode.Val;
251
252        var left = CreateSymbolicRegressionTreeRecursive(treeNodes, curNode.LeftIdx, varCondSy, constSy);
253        var right = CreateSymbolicRegressionTreeRecursive(treeNodes, curNode.RightIdx, varCondSy, constSy);
254        node.AddSubtree(left);
255        node.AddSubtree(right);
256        return node;
257      }
258    }
259
260
261    private string TreeToString(int idx, string part) {
262      var n = tree[idx];
263      if (n.VarName == TreeNode.NO_VARIABLE) {
264        return string.Format(CultureInfo.InvariantCulture, "{0} -> {1:F}{2}", part, n.Val, Environment.NewLine);
265      } else {
266        return
267          TreeToString(n.LeftIdx, string.Format(CultureInfo.InvariantCulture, "{0}{1}{2} <= {3:F} ({4:N3})", part, string.IsNullOrEmpty(part) ? "" : " and ", n.VarName, n.Val, n.WeightLeft))
268        + TreeToString(n.RightIdx, string.Format(CultureInfo.InvariantCulture, "{0}{1}{2}  >  {3:F} ({4:N3}))", part, string.IsNullOrEmpty(part) ? "" : " and ", n.VarName, n.Val, 1.0 - n.WeightLeft));
269      }
270    }
271
272  }
273}
Note: See TracBrowser for help on using the repository browser.