1 | /*************************************************************************
|
---|
2 | Copyright (c) Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 | >>> END OF LICENSE >>>
|
---|
18 | *************************************************************************/
|
---|
19 | #pragma warning disable 162
|
---|
20 | #pragma warning disable 219
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | public partial class alglib
|
---|
24 | {
|
---|
25 |
|
---|
26 |
|
---|
27 | /*************************************************************************
|
---|
28 | 1-dimensional complex FFT.
|
---|
29 |
|
---|
30 | Array size N may be arbitrary number (composite or prime). Composite N's
|
---|
31 | are handled with cache-oblivious variation of a Cooley-Tukey algorithm.
|
---|
32 | Small prime-factors are transformed using hard coded codelets (similar to
|
---|
33 | FFTW codelets, but without low-level optimization), large prime-factors
|
---|
34 | are handled with Bluestein's algorithm.
|
---|
35 |
|
---|
36 | Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only),
|
---|
37 | most fast for powers of 2. When N have prime factors larger than these,
|
---|
38 | but orders of magnitude smaller than N, computations will be about 4 times
|
---|
39 | slower than for nearby highly composite N's. When N itself is prime, speed
|
---|
40 | will be 6 times lower.
|
---|
41 |
|
---|
42 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
43 |
|
---|
44 | INPUT PARAMETERS
|
---|
45 | A - array[0..N-1] - complex function to be transformed
|
---|
46 | N - problem size
|
---|
47 |
|
---|
48 | OUTPUT PARAMETERS
|
---|
49 | A - DFT of a input array, array[0..N-1]
|
---|
50 | A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
51 |
|
---|
52 |
|
---|
53 | -- ALGLIB --
|
---|
54 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
55 | *************************************************************************/
|
---|
56 | public static void fftc1d(ref complex[] a, int n)
|
---|
57 | {
|
---|
58 |
|
---|
59 | fft.fftc1d(ref a, n);
|
---|
60 | return;
|
---|
61 | }
|
---|
62 | public static void fftc1d(ref complex[] a)
|
---|
63 | {
|
---|
64 | int n;
|
---|
65 |
|
---|
66 |
|
---|
67 | n = ap.len(a);
|
---|
68 | fft.fftc1d(ref a, n);
|
---|
69 |
|
---|
70 | return;
|
---|
71 | }
|
---|
72 |
|
---|
73 | /*************************************************************************
|
---|
74 | 1-dimensional complex inverse FFT.
|
---|
75 |
|
---|
76 | Array size N may be arbitrary number (composite or prime). Algorithm has
|
---|
77 | O(N*logN) complexity for any N (composite or prime).
|
---|
78 |
|
---|
79 | See FFTC1D() description for more information about algorithm performance.
|
---|
80 |
|
---|
81 | INPUT PARAMETERS
|
---|
82 | A - array[0..N-1] - complex array to be transformed
|
---|
83 | N - problem size
|
---|
84 |
|
---|
85 | OUTPUT PARAMETERS
|
---|
86 | A - inverse DFT of a input array, array[0..N-1]
|
---|
87 | A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
88 |
|
---|
89 |
|
---|
90 | -- ALGLIB --
|
---|
91 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
92 | *************************************************************************/
|
---|
93 | public static void fftc1dinv(ref complex[] a, int n)
|
---|
94 | {
|
---|
95 |
|
---|
96 | fft.fftc1dinv(ref a, n);
|
---|
97 | return;
|
---|
98 | }
|
---|
99 | public static void fftc1dinv(ref complex[] a)
|
---|
100 | {
|
---|
101 | int n;
|
---|
102 |
|
---|
103 |
|
---|
104 | n = ap.len(a);
|
---|
105 | fft.fftc1dinv(ref a, n);
|
---|
106 |
|
---|
107 | return;
|
---|
108 | }
|
---|
109 |
|
---|
110 | /*************************************************************************
|
---|
111 | 1-dimensional real FFT.
|
---|
112 |
|
---|
113 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
114 |
|
---|
115 | INPUT PARAMETERS
|
---|
116 | A - array[0..N-1] - real function to be transformed
|
---|
117 | N - problem size
|
---|
118 |
|
---|
119 | OUTPUT PARAMETERS
|
---|
120 | F - DFT of a input array, array[0..N-1]
|
---|
121 | F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
122 |
|
---|
123 | NOTE:
|
---|
124 | F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half
|
---|
125 | of array is usually needed. But for convinience subroutine returns full
|
---|
126 | complex array (with frequencies above N/2), so its result may be used by
|
---|
127 | other FFT-related subroutines.
|
---|
128 |
|
---|
129 |
|
---|
130 | -- ALGLIB --
|
---|
131 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
132 | *************************************************************************/
|
---|
133 | public static void fftr1d(double[] a, int n, out complex[] f)
|
---|
134 | {
|
---|
135 | f = new complex[0];
|
---|
136 | fft.fftr1d(a, n, ref f);
|
---|
137 | return;
|
---|
138 | }
|
---|
139 | public static void fftr1d(double[] a, out complex[] f)
|
---|
140 | {
|
---|
141 | int n;
|
---|
142 |
|
---|
143 | f = new complex[0];
|
---|
144 | n = ap.len(a);
|
---|
145 | fft.fftr1d(a, n, ref f);
|
---|
146 |
|
---|
147 | return;
|
---|
148 | }
|
---|
149 |
|
---|
150 | /*************************************************************************
|
---|
151 | 1-dimensional real inverse FFT.
|
---|
152 |
|
---|
153 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
154 |
|
---|
155 | INPUT PARAMETERS
|
---|
156 | F - array[0..floor(N/2)] - frequencies from forward real FFT
|
---|
157 | N - problem size
|
---|
158 |
|
---|
159 | OUTPUT PARAMETERS
|
---|
160 | A - inverse DFT of a input array, array[0..N-1]
|
---|
161 |
|
---|
162 | NOTE:
|
---|
163 | F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one
|
---|
164 | half of frequencies array is needed - elements from 0 to floor(N/2). F[0]
|
---|
165 | is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then
|
---|
166 | F[floor(N/2)] has no special properties.
|
---|
167 |
|
---|
168 | Relying on properties noted above, FFTR1DInv subroutine uses only elements
|
---|
169 | from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case
|
---|
170 | N is even it ignores imaginary part of F[floor(N/2)] too.
|
---|
171 |
|
---|
172 | When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
|
---|
173 | - you can pass either either frequencies array with N elements or reduced
|
---|
174 | array with roughly N/2 elements - subroutine will successfully transform
|
---|
175 | both.
|
---|
176 |
|
---|
177 | If you call this function using reduced arguments list - "FFTR1DInv(F,A)"
|
---|
178 | - you must pass FULL array with N elements (although higher N/2 are still
|
---|
179 | not used) because array size is used to automatically determine FFT length
|
---|
180 |
|
---|
181 |
|
---|
182 | -- ALGLIB --
|
---|
183 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
184 | *************************************************************************/
|
---|
185 | public static void fftr1dinv(complex[] f, int n, out double[] a)
|
---|
186 | {
|
---|
187 | a = new double[0];
|
---|
188 | fft.fftr1dinv(f, n, ref a);
|
---|
189 | return;
|
---|
190 | }
|
---|
191 | public static void fftr1dinv(complex[] f, out double[] a)
|
---|
192 | {
|
---|
193 | int n;
|
---|
194 |
|
---|
195 | a = new double[0];
|
---|
196 | n = ap.len(f);
|
---|
197 | fft.fftr1dinv(f, n, ref a);
|
---|
198 |
|
---|
199 | return;
|
---|
200 | }
|
---|
201 |
|
---|
202 | }
|
---|
203 | public partial class alglib
|
---|
204 | {
|
---|
205 |
|
---|
206 |
|
---|
207 | /*************************************************************************
|
---|
208 | 1-dimensional complex convolution.
|
---|
209 |
|
---|
210 | For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
|
---|
211 | choose between three implementations: straightforward O(M*N) formula for
|
---|
212 | very small N (or M), overlap-add algorithm for cases where max(M,N) is
|
---|
213 | significantly larger than min(M,N), but O(M*N) algorithm is too slow, and
|
---|
214 | general FFT-based formula for cases where two previois algorithms are too
|
---|
215 | slow.
|
---|
216 |
|
---|
217 | Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
|
---|
218 |
|
---|
219 | INPUT PARAMETERS
|
---|
220 | A - array[0..M-1] - complex function to be transformed
|
---|
221 | M - problem size
|
---|
222 | B - array[0..N-1] - complex function to be transformed
|
---|
223 | N - problem size
|
---|
224 |
|
---|
225 | OUTPUT PARAMETERS
|
---|
226 | R - convolution: A*B. array[0..N+M-2].
|
---|
227 |
|
---|
228 | NOTE:
|
---|
229 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
230 | functions have non-zero values at negative T's, you can still use this
|
---|
231 | subroutine - just shift its result correspondingly.
|
---|
232 |
|
---|
233 | -- ALGLIB --
|
---|
234 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
235 | *************************************************************************/
|
---|
236 | public static void convc1d(complex[] a, int m, complex[] b, int n, out complex[] r)
|
---|
237 | {
|
---|
238 | r = new complex[0];
|
---|
239 | conv.convc1d(a, m, b, n, ref r);
|
---|
240 | return;
|
---|
241 | }
|
---|
242 |
|
---|
243 | /*************************************************************************
|
---|
244 | 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
|
---|
245 |
|
---|
246 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
247 |
|
---|
248 | INPUT PARAMETERS
|
---|
249 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
250 | M - convolved signal length
|
---|
251 | B - array[0..N-1] - response
|
---|
252 | N - response length, N<=M
|
---|
253 |
|
---|
254 | OUTPUT PARAMETERS
|
---|
255 | R - deconvolved signal. array[0..M-N].
|
---|
256 |
|
---|
257 | NOTE:
|
---|
258 | deconvolution is unstable process and may result in division by zero
|
---|
259 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
260 |
|
---|
261 | NOTE:
|
---|
262 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
263 | functions have non-zero values at negative T's, you can still use this
|
---|
264 | subroutine - just shift its result correspondingly.
|
---|
265 |
|
---|
266 | -- ALGLIB --
|
---|
267 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
268 | *************************************************************************/
|
---|
269 | public static void convc1dinv(complex[] a, int m, complex[] b, int n, out complex[] r)
|
---|
270 | {
|
---|
271 | r = new complex[0];
|
---|
272 | conv.convc1dinv(a, m, b, n, ref r);
|
---|
273 | return;
|
---|
274 | }
|
---|
275 |
|
---|
276 | /*************************************************************************
|
---|
277 | 1-dimensional circular complex convolution.
|
---|
278 |
|
---|
279 | For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
|
---|
280 | complexity for any M/N.
|
---|
281 |
|
---|
282 | IMPORTANT: normal convolution is commutative, i.e. it is symmetric -
|
---|
283 | conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a
|
---|
284 | signal, periodic function, and another - R - is a response, non-periodic
|
---|
285 | function with limited length.
|
---|
286 |
|
---|
287 | INPUT PARAMETERS
|
---|
288 | S - array[0..M-1] - complex periodic signal
|
---|
289 | M - problem size
|
---|
290 | B - array[0..N-1] - complex non-periodic response
|
---|
291 | N - problem size
|
---|
292 |
|
---|
293 | OUTPUT PARAMETERS
|
---|
294 | R - convolution: A*B. array[0..M-1].
|
---|
295 |
|
---|
296 | NOTE:
|
---|
297 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
298 | negative T's, you can still use this subroutine - just shift its result
|
---|
299 | correspondingly.
|
---|
300 |
|
---|
301 | -- ALGLIB --
|
---|
302 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
303 | *************************************************************************/
|
---|
304 | public static void convc1dcircular(complex[] s, int m, complex[] r, int n, out complex[] c)
|
---|
305 | {
|
---|
306 | c = new complex[0];
|
---|
307 | conv.convc1dcircular(s, m, r, n, ref c);
|
---|
308 | return;
|
---|
309 | }
|
---|
310 |
|
---|
311 | /*************************************************************************
|
---|
312 | 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
|
---|
313 |
|
---|
314 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
315 |
|
---|
316 | INPUT PARAMETERS
|
---|
317 | A - array[0..M-1] - convolved periodic signal, A = conv(R, B)
|
---|
318 | M - convolved signal length
|
---|
319 | B - array[0..N-1] - non-periodic response
|
---|
320 | N - response length
|
---|
321 |
|
---|
322 | OUTPUT PARAMETERS
|
---|
323 | R - deconvolved signal. array[0..M-1].
|
---|
324 |
|
---|
325 | NOTE:
|
---|
326 | deconvolution is unstable process and may result in division by zero
|
---|
327 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
328 |
|
---|
329 | NOTE:
|
---|
330 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
331 | negative T's, you can still use this subroutine - just shift its result
|
---|
332 | correspondingly.
|
---|
333 |
|
---|
334 | -- ALGLIB --
|
---|
335 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
336 | *************************************************************************/
|
---|
337 | public static void convc1dcircularinv(complex[] a, int m, complex[] b, int n, out complex[] r)
|
---|
338 | {
|
---|
339 | r = new complex[0];
|
---|
340 | conv.convc1dcircularinv(a, m, b, n, ref r);
|
---|
341 | return;
|
---|
342 | }
|
---|
343 |
|
---|
344 | /*************************************************************************
|
---|
345 | 1-dimensional real convolution.
|
---|
346 |
|
---|
347 | Analogous to ConvC1D(), see ConvC1D() comments for more details.
|
---|
348 |
|
---|
349 | INPUT PARAMETERS
|
---|
350 | A - array[0..M-1] - real function to be transformed
|
---|
351 | M - problem size
|
---|
352 | B - array[0..N-1] - real function to be transformed
|
---|
353 | N - problem size
|
---|
354 |
|
---|
355 | OUTPUT PARAMETERS
|
---|
356 | R - convolution: A*B. array[0..N+M-2].
|
---|
357 |
|
---|
358 | NOTE:
|
---|
359 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
360 | functions have non-zero values at negative T's, you can still use this
|
---|
361 | subroutine - just shift its result correspondingly.
|
---|
362 |
|
---|
363 | -- ALGLIB --
|
---|
364 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
365 | *************************************************************************/
|
---|
366 | public static void convr1d(double[] a, int m, double[] b, int n, out double[] r)
|
---|
367 | {
|
---|
368 | r = new double[0];
|
---|
369 | conv.convr1d(a, m, b, n, ref r);
|
---|
370 | return;
|
---|
371 | }
|
---|
372 |
|
---|
373 | /*************************************************************************
|
---|
374 | 1-dimensional real deconvolution (inverse of ConvC1D()).
|
---|
375 |
|
---|
376 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
377 |
|
---|
378 | INPUT PARAMETERS
|
---|
379 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
380 | M - convolved signal length
|
---|
381 | B - array[0..N-1] - response
|
---|
382 | N - response length, N<=M
|
---|
383 |
|
---|
384 | OUTPUT PARAMETERS
|
---|
385 | R - deconvolved signal. array[0..M-N].
|
---|
386 |
|
---|
387 | NOTE:
|
---|
388 | deconvolution is unstable process and may result in division by zero
|
---|
389 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
390 |
|
---|
391 | NOTE:
|
---|
392 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
393 | functions have non-zero values at negative T's, you can still use this
|
---|
394 | subroutine - just shift its result correspondingly.
|
---|
395 |
|
---|
396 | -- ALGLIB --
|
---|
397 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
398 | *************************************************************************/
|
---|
399 | public static void convr1dinv(double[] a, int m, double[] b, int n, out double[] r)
|
---|
400 | {
|
---|
401 | r = new double[0];
|
---|
402 | conv.convr1dinv(a, m, b, n, ref r);
|
---|
403 | return;
|
---|
404 | }
|
---|
405 |
|
---|
406 | /*************************************************************************
|
---|
407 | 1-dimensional circular real convolution.
|
---|
408 |
|
---|
409 | Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
|
---|
410 |
|
---|
411 | INPUT PARAMETERS
|
---|
412 | S - array[0..M-1] - real signal
|
---|
413 | M - problem size
|
---|
414 | B - array[0..N-1] - real response
|
---|
415 | N - problem size
|
---|
416 |
|
---|
417 | OUTPUT PARAMETERS
|
---|
418 | R - convolution: A*B. array[0..M-1].
|
---|
419 |
|
---|
420 | NOTE:
|
---|
421 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
422 | negative T's, you can still use this subroutine - just shift its result
|
---|
423 | correspondingly.
|
---|
424 |
|
---|
425 | -- ALGLIB --
|
---|
426 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
427 | *************************************************************************/
|
---|
428 | public static void convr1dcircular(double[] s, int m, double[] r, int n, out double[] c)
|
---|
429 | {
|
---|
430 | c = new double[0];
|
---|
431 | conv.convr1dcircular(s, m, r, n, ref c);
|
---|
432 | return;
|
---|
433 | }
|
---|
434 |
|
---|
435 | /*************************************************************************
|
---|
436 | 1-dimensional complex deconvolution (inverse of ConvC1D()).
|
---|
437 |
|
---|
438 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
439 |
|
---|
440 | INPUT PARAMETERS
|
---|
441 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
442 | M - convolved signal length
|
---|
443 | B - array[0..N-1] - response
|
---|
444 | N - response length
|
---|
445 |
|
---|
446 | OUTPUT PARAMETERS
|
---|
447 | R - deconvolved signal. array[0..M-N].
|
---|
448 |
|
---|
449 | NOTE:
|
---|
450 | deconvolution is unstable process and may result in division by zero
|
---|
451 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
452 |
|
---|
453 | NOTE:
|
---|
454 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
455 | negative T's, you can still use this subroutine - just shift its result
|
---|
456 | correspondingly.
|
---|
457 |
|
---|
458 | -- ALGLIB --
|
---|
459 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
460 | *************************************************************************/
|
---|
461 | public static void convr1dcircularinv(double[] a, int m, double[] b, int n, out double[] r)
|
---|
462 | {
|
---|
463 | r = new double[0];
|
---|
464 | conv.convr1dcircularinv(a, m, b, n, ref r);
|
---|
465 | return;
|
---|
466 | }
|
---|
467 |
|
---|
468 | }
|
---|
469 | public partial class alglib
|
---|
470 | {
|
---|
471 |
|
---|
472 |
|
---|
473 | /*************************************************************************
|
---|
474 | 1-dimensional complex cross-correlation.
|
---|
475 |
|
---|
476 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
477 |
|
---|
478 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
479 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
480 | about performance).
|
---|
481 |
|
---|
482 | IMPORTANT:
|
---|
483 | for historical reasons subroutine accepts its parameters in reversed
|
---|
484 | order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
485 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
486 |
|
---|
487 | INPUT PARAMETERS
|
---|
488 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
489 | signal containing pattern
|
---|
490 | N - problem size
|
---|
491 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
492 | pattern to search withing signal
|
---|
493 | M - problem size
|
---|
494 |
|
---|
495 | OUTPUT PARAMETERS
|
---|
496 | R - cross-correlation, array[0..N+M-2]:
|
---|
497 | * positive lags are stored in R[0..N-1],
|
---|
498 | R[i] = sum(conj(pattern[j])*signal[i+j]
|
---|
499 | * negative lags are stored in R[N..N+M-2],
|
---|
500 | R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
|
---|
501 |
|
---|
502 | NOTE:
|
---|
503 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
504 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
505 |
|
---|
506 | -- ALGLIB --
|
---|
507 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
508 | *************************************************************************/
|
---|
509 | public static void corrc1d(complex[] signal, int n, complex[] pattern, int m, out complex[] r)
|
---|
510 | {
|
---|
511 | r = new complex[0];
|
---|
512 | corr.corrc1d(signal, n, pattern, m, ref r);
|
---|
513 | return;
|
---|
514 | }
|
---|
515 |
|
---|
516 | /*************************************************************************
|
---|
517 | 1-dimensional circular complex cross-correlation.
|
---|
518 |
|
---|
519 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
520 | Algorithm has linearithmic complexity for any M/N.
|
---|
521 |
|
---|
522 | IMPORTANT:
|
---|
523 | for historical reasons subroutine accepts its parameters in reversed
|
---|
524 | order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
525 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
526 | as "x").
|
---|
527 |
|
---|
528 | INPUT PARAMETERS
|
---|
529 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
530 | periodic signal containing pattern
|
---|
531 | N - problem size
|
---|
532 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
533 | non-periodic pattern to search withing signal
|
---|
534 | M - problem size
|
---|
535 |
|
---|
536 | OUTPUT PARAMETERS
|
---|
537 | R - convolution: A*B. array[0..M-1].
|
---|
538 |
|
---|
539 |
|
---|
540 | -- ALGLIB --
|
---|
541 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
542 | *************************************************************************/
|
---|
543 | public static void corrc1dcircular(complex[] signal, int m, complex[] pattern, int n, out complex[] c)
|
---|
544 | {
|
---|
545 | c = new complex[0];
|
---|
546 | corr.corrc1dcircular(signal, m, pattern, n, ref c);
|
---|
547 | return;
|
---|
548 | }
|
---|
549 |
|
---|
550 | /*************************************************************************
|
---|
551 | 1-dimensional real cross-correlation.
|
---|
552 |
|
---|
553 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
554 |
|
---|
555 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
556 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
557 | about performance).
|
---|
558 |
|
---|
559 | IMPORTANT:
|
---|
560 | for historical reasons subroutine accepts its parameters in reversed
|
---|
561 | order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
562 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
563 |
|
---|
564 | INPUT PARAMETERS
|
---|
565 | Signal - array[0..N-1] - real function to be transformed,
|
---|
566 | signal containing pattern
|
---|
567 | N - problem size
|
---|
568 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
569 | pattern to search withing signal
|
---|
570 | M - problem size
|
---|
571 |
|
---|
572 | OUTPUT PARAMETERS
|
---|
573 | R - cross-correlation, array[0..N+M-2]:
|
---|
574 | * positive lags are stored in R[0..N-1],
|
---|
575 | R[i] = sum(pattern[j]*signal[i+j]
|
---|
576 | * negative lags are stored in R[N..N+M-2],
|
---|
577 | R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
|
---|
578 |
|
---|
579 | NOTE:
|
---|
580 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
581 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
582 |
|
---|
583 | -- ALGLIB --
|
---|
584 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
585 | *************************************************************************/
|
---|
586 | public static void corrr1d(double[] signal, int n, double[] pattern, int m, out double[] r)
|
---|
587 | {
|
---|
588 | r = new double[0];
|
---|
589 | corr.corrr1d(signal, n, pattern, m, ref r);
|
---|
590 | return;
|
---|
591 | }
|
---|
592 |
|
---|
593 | /*************************************************************************
|
---|
594 | 1-dimensional circular real cross-correlation.
|
---|
595 |
|
---|
596 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
597 | Algorithm has linearithmic complexity for any M/N.
|
---|
598 |
|
---|
599 | IMPORTANT:
|
---|
600 | for historical reasons subroutine accepts its parameters in reversed
|
---|
601 | order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
602 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
603 | as "x").
|
---|
604 |
|
---|
605 | INPUT PARAMETERS
|
---|
606 | Signal - array[0..N-1] - real function to be transformed,
|
---|
607 | periodic signal containing pattern
|
---|
608 | N - problem size
|
---|
609 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
610 | non-periodic pattern to search withing signal
|
---|
611 | M - problem size
|
---|
612 |
|
---|
613 | OUTPUT PARAMETERS
|
---|
614 | R - convolution: A*B. array[0..M-1].
|
---|
615 |
|
---|
616 |
|
---|
617 | -- ALGLIB --
|
---|
618 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
619 | *************************************************************************/
|
---|
620 | public static void corrr1dcircular(double[] signal, int m, double[] pattern, int n, out double[] c)
|
---|
621 | {
|
---|
622 | c = new double[0];
|
---|
623 | corr.corrr1dcircular(signal, m, pattern, n, ref c);
|
---|
624 | return;
|
---|
625 | }
|
---|
626 |
|
---|
627 | }
|
---|
628 | public partial class alglib
|
---|
629 | {
|
---|
630 |
|
---|
631 |
|
---|
632 | /*************************************************************************
|
---|
633 | 1-dimensional Fast Hartley Transform.
|
---|
634 |
|
---|
635 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
636 |
|
---|
637 | INPUT PARAMETERS
|
---|
638 | A - array[0..N-1] - real function to be transformed
|
---|
639 | N - problem size
|
---|
640 |
|
---|
641 | OUTPUT PARAMETERS
|
---|
642 | A - FHT of a input array, array[0..N-1],
|
---|
643 | A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)
|
---|
644 |
|
---|
645 |
|
---|
646 | -- ALGLIB --
|
---|
647 | Copyright 04.06.2009 by Bochkanov Sergey
|
---|
648 | *************************************************************************/
|
---|
649 | public static void fhtr1d(ref double[] a, int n)
|
---|
650 | {
|
---|
651 |
|
---|
652 | fht.fhtr1d(ref a, n);
|
---|
653 | return;
|
---|
654 | }
|
---|
655 |
|
---|
656 | /*************************************************************************
|
---|
657 | 1-dimensional inverse FHT.
|
---|
658 |
|
---|
659 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
660 |
|
---|
661 | INPUT PARAMETERS
|
---|
662 | A - array[0..N-1] - complex array to be transformed
|
---|
663 | N - problem size
|
---|
664 |
|
---|
665 | OUTPUT PARAMETERS
|
---|
666 | A - inverse FHT of a input array, array[0..N-1]
|
---|
667 |
|
---|
668 |
|
---|
669 | -- ALGLIB --
|
---|
670 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
671 | *************************************************************************/
|
---|
672 | public static void fhtr1dinv(ref double[] a, int n)
|
---|
673 | {
|
---|
674 |
|
---|
675 | fht.fhtr1dinv(ref a, n);
|
---|
676 | return;
|
---|
677 | }
|
---|
678 |
|
---|
679 | }
|
---|
680 | public partial class alglib
|
---|
681 | {
|
---|
682 | public class fft
|
---|
683 | {
|
---|
684 | /*************************************************************************
|
---|
685 | 1-dimensional complex FFT.
|
---|
686 |
|
---|
687 | Array size N may be arbitrary number (composite or prime). Composite N's
|
---|
688 | are handled with cache-oblivious variation of a Cooley-Tukey algorithm.
|
---|
689 | Small prime-factors are transformed using hard coded codelets (similar to
|
---|
690 | FFTW codelets, but without low-level optimization), large prime-factors
|
---|
691 | are handled with Bluestein's algorithm.
|
---|
692 |
|
---|
693 | Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only),
|
---|
694 | most fast for powers of 2. When N have prime factors larger than these,
|
---|
695 | but orders of magnitude smaller than N, computations will be about 4 times
|
---|
696 | slower than for nearby highly composite N's. When N itself is prime, speed
|
---|
697 | will be 6 times lower.
|
---|
698 |
|
---|
699 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
700 |
|
---|
701 | INPUT PARAMETERS
|
---|
702 | A - array[0..N-1] - complex function to be transformed
|
---|
703 | N - problem size
|
---|
704 |
|
---|
705 | OUTPUT PARAMETERS
|
---|
706 | A - DFT of a input array, array[0..N-1]
|
---|
707 | A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
708 |
|
---|
709 |
|
---|
710 | -- ALGLIB --
|
---|
711 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
712 | *************************************************************************/
|
---|
713 | public static void fftc1d(ref complex[] a,
|
---|
714 | int n)
|
---|
715 | {
|
---|
716 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
717 | int i = 0;
|
---|
718 | double[] buf = new double[0];
|
---|
719 |
|
---|
720 | ap.assert(n>0, "FFTC1D: incorrect N!");
|
---|
721 | ap.assert(ap.len(a)>=n, "FFTC1D: Length(A)<N!");
|
---|
722 | ap.assert(apserv.isfinitecvector(a, n), "FFTC1D: A contains infinite or NAN values!");
|
---|
723 |
|
---|
724 | //
|
---|
725 | // Special case: N=1, FFT is just identity transform.
|
---|
726 | // After this block we assume that N is strictly greater than 1.
|
---|
727 | //
|
---|
728 | if( n==1 )
|
---|
729 | {
|
---|
730 | return;
|
---|
731 | }
|
---|
732 |
|
---|
733 | //
|
---|
734 | // convert input array to the more convinient format
|
---|
735 | //
|
---|
736 | buf = new double[2*n];
|
---|
737 | for(i=0; i<=n-1; i++)
|
---|
738 | {
|
---|
739 | buf[2*i+0] = a[i].x;
|
---|
740 | buf[2*i+1] = a[i].y;
|
---|
741 | }
|
---|
742 |
|
---|
743 | //
|
---|
744 | // Generate plan and execute it.
|
---|
745 | //
|
---|
746 | // Plan is a combination of a successive factorizations of N and
|
---|
747 | // precomputed data. It is much like a FFTW plan, but is not stored
|
---|
748 | // between subroutine calls and is much simpler.
|
---|
749 | //
|
---|
750 | ftbase.ftbasegeneratecomplexfftplan(n, plan);
|
---|
751 | ftbase.ftbaseexecuteplan(ref buf, 0, n, plan);
|
---|
752 |
|
---|
753 | //
|
---|
754 | // result
|
---|
755 | //
|
---|
756 | for(i=0; i<=n-1; i++)
|
---|
757 | {
|
---|
758 | a[i].x = buf[2*i+0];
|
---|
759 | a[i].y = buf[2*i+1];
|
---|
760 | }
|
---|
761 | }
|
---|
762 |
|
---|
763 |
|
---|
764 | /*************************************************************************
|
---|
765 | 1-dimensional complex inverse FFT.
|
---|
766 |
|
---|
767 | Array size N may be arbitrary number (composite or prime). Algorithm has
|
---|
768 | O(N*logN) complexity for any N (composite or prime).
|
---|
769 |
|
---|
770 | See FFTC1D() description for more information about algorithm performance.
|
---|
771 |
|
---|
772 | INPUT PARAMETERS
|
---|
773 | A - array[0..N-1] - complex array to be transformed
|
---|
774 | N - problem size
|
---|
775 |
|
---|
776 | OUTPUT PARAMETERS
|
---|
777 | A - inverse DFT of a input array, array[0..N-1]
|
---|
778 | A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
779 |
|
---|
780 |
|
---|
781 | -- ALGLIB --
|
---|
782 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
783 | *************************************************************************/
|
---|
784 | public static void fftc1dinv(ref complex[] a,
|
---|
785 | int n)
|
---|
786 | {
|
---|
787 | int i = 0;
|
---|
788 |
|
---|
789 | ap.assert(n>0, "FFTC1DInv: incorrect N!");
|
---|
790 | ap.assert(ap.len(a)>=n, "FFTC1DInv: Length(A)<N!");
|
---|
791 | ap.assert(apserv.isfinitecvector(a, n), "FFTC1DInv: A contains infinite or NAN values!");
|
---|
792 |
|
---|
793 | //
|
---|
794 | // Inverse DFT can be expressed in terms of the DFT as
|
---|
795 | //
|
---|
796 | // invfft(x) = fft(x')'/N
|
---|
797 | //
|
---|
798 | // here x' means conj(x).
|
---|
799 | //
|
---|
800 | for(i=0; i<=n-1; i++)
|
---|
801 | {
|
---|
802 | a[i].y = -a[i].y;
|
---|
803 | }
|
---|
804 | fftc1d(ref a, n);
|
---|
805 | for(i=0; i<=n-1; i++)
|
---|
806 | {
|
---|
807 | a[i].x = a[i].x/n;
|
---|
808 | a[i].y = -(a[i].y/n);
|
---|
809 | }
|
---|
810 | }
|
---|
811 |
|
---|
812 |
|
---|
813 | /*************************************************************************
|
---|
814 | 1-dimensional real FFT.
|
---|
815 |
|
---|
816 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
817 |
|
---|
818 | INPUT PARAMETERS
|
---|
819 | A - array[0..N-1] - real function to be transformed
|
---|
820 | N - problem size
|
---|
821 |
|
---|
822 | OUTPUT PARAMETERS
|
---|
823 | F - DFT of a input array, array[0..N-1]
|
---|
824 | F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
|
---|
825 |
|
---|
826 | NOTE:
|
---|
827 | F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half
|
---|
828 | of array is usually needed. But for convinience subroutine returns full
|
---|
829 | complex array (with frequencies above N/2), so its result may be used by
|
---|
830 | other FFT-related subroutines.
|
---|
831 |
|
---|
832 |
|
---|
833 | -- ALGLIB --
|
---|
834 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
835 | *************************************************************************/
|
---|
836 | public static void fftr1d(double[] a,
|
---|
837 | int n,
|
---|
838 | ref complex[] f)
|
---|
839 | {
|
---|
840 | int i = 0;
|
---|
841 | int n2 = 0;
|
---|
842 | int idx = 0;
|
---|
843 | complex hn = 0;
|
---|
844 | complex hmnc = 0;
|
---|
845 | complex v = 0;
|
---|
846 | double[] buf = new double[0];
|
---|
847 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
848 | int i_ = 0;
|
---|
849 |
|
---|
850 | f = new complex[0];
|
---|
851 |
|
---|
852 | ap.assert(n>0, "FFTR1D: incorrect N!");
|
---|
853 | ap.assert(ap.len(a)>=n, "FFTR1D: Length(A)<N!");
|
---|
854 | ap.assert(apserv.isfinitevector(a, n), "FFTR1D: A contains infinite or NAN values!");
|
---|
855 |
|
---|
856 | //
|
---|
857 | // Special cases:
|
---|
858 | // * N=1, FFT is just identity transform.
|
---|
859 | // * N=2, FFT is simple too
|
---|
860 | //
|
---|
861 | // After this block we assume that N is strictly greater than 2
|
---|
862 | //
|
---|
863 | if( n==1 )
|
---|
864 | {
|
---|
865 | f = new complex[1];
|
---|
866 | f[0] = a[0];
|
---|
867 | return;
|
---|
868 | }
|
---|
869 | if( n==2 )
|
---|
870 | {
|
---|
871 | f = new complex[2];
|
---|
872 | f[0].x = a[0]+a[1];
|
---|
873 | f[0].y = 0;
|
---|
874 | f[1].x = a[0]-a[1];
|
---|
875 | f[1].y = 0;
|
---|
876 | return;
|
---|
877 | }
|
---|
878 |
|
---|
879 | //
|
---|
880 | // Choose between odd-size and even-size FFTs
|
---|
881 | //
|
---|
882 | if( n%2==0 )
|
---|
883 | {
|
---|
884 |
|
---|
885 | //
|
---|
886 | // even-size real FFT, use reduction to the complex task
|
---|
887 | //
|
---|
888 | n2 = n/2;
|
---|
889 | buf = new double[n];
|
---|
890 | for(i_=0; i_<=n-1;i_++)
|
---|
891 | {
|
---|
892 | buf[i_] = a[i_];
|
---|
893 | }
|
---|
894 | ftbase.ftbasegeneratecomplexfftplan(n2, plan);
|
---|
895 | ftbase.ftbaseexecuteplan(ref buf, 0, n2, plan);
|
---|
896 | f = new complex[n];
|
---|
897 | for(i=0; i<=n2; i++)
|
---|
898 | {
|
---|
899 | idx = 2*(i%n2);
|
---|
900 | hn.x = buf[idx+0];
|
---|
901 | hn.y = buf[idx+1];
|
---|
902 | idx = 2*((n2-i)%n2);
|
---|
903 | hmnc.x = buf[idx+0];
|
---|
904 | hmnc.y = -buf[idx+1];
|
---|
905 | v.x = -Math.Sin(-(2*Math.PI*i/n));
|
---|
906 | v.y = Math.Cos(-(2*Math.PI*i/n));
|
---|
907 | f[i] = hn+hmnc-v*(hn-hmnc);
|
---|
908 | f[i].x = 0.5*f[i].x;
|
---|
909 | f[i].y = 0.5*f[i].y;
|
---|
910 | }
|
---|
911 | for(i=n2+1; i<=n-1; i++)
|
---|
912 | {
|
---|
913 | f[i] = math.conj(f[n-i]);
|
---|
914 | }
|
---|
915 | }
|
---|
916 | else
|
---|
917 | {
|
---|
918 |
|
---|
919 | //
|
---|
920 | // use complex FFT
|
---|
921 | //
|
---|
922 | f = new complex[n];
|
---|
923 | for(i=0; i<=n-1; i++)
|
---|
924 | {
|
---|
925 | f[i] = a[i];
|
---|
926 | }
|
---|
927 | fftc1d(ref f, n);
|
---|
928 | }
|
---|
929 | }
|
---|
930 |
|
---|
931 |
|
---|
932 | /*************************************************************************
|
---|
933 | 1-dimensional real inverse FFT.
|
---|
934 |
|
---|
935 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
936 |
|
---|
937 | INPUT PARAMETERS
|
---|
938 | F - array[0..floor(N/2)] - frequencies from forward real FFT
|
---|
939 | N - problem size
|
---|
940 |
|
---|
941 | OUTPUT PARAMETERS
|
---|
942 | A - inverse DFT of a input array, array[0..N-1]
|
---|
943 |
|
---|
944 | NOTE:
|
---|
945 | F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one
|
---|
946 | half of frequencies array is needed - elements from 0 to floor(N/2). F[0]
|
---|
947 | is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then
|
---|
948 | F[floor(N/2)] has no special properties.
|
---|
949 |
|
---|
950 | Relying on properties noted above, FFTR1DInv subroutine uses only elements
|
---|
951 | from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case
|
---|
952 | N is even it ignores imaginary part of F[floor(N/2)] too.
|
---|
953 |
|
---|
954 | When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
|
---|
955 | - you can pass either either frequencies array with N elements or reduced
|
---|
956 | array with roughly N/2 elements - subroutine will successfully transform
|
---|
957 | both.
|
---|
958 |
|
---|
959 | If you call this function using reduced arguments list - "FFTR1DInv(F,A)"
|
---|
960 | - you must pass FULL array with N elements (although higher N/2 are still
|
---|
961 | not used) because array size is used to automatically determine FFT length
|
---|
962 |
|
---|
963 |
|
---|
964 | -- ALGLIB --
|
---|
965 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
966 | *************************************************************************/
|
---|
967 | public static void fftr1dinv(complex[] f,
|
---|
968 | int n,
|
---|
969 | ref double[] a)
|
---|
970 | {
|
---|
971 | int i = 0;
|
---|
972 | double[] h = new double[0];
|
---|
973 | complex[] fh = new complex[0];
|
---|
974 |
|
---|
975 | a = new double[0];
|
---|
976 |
|
---|
977 | ap.assert(n>0, "FFTR1DInv: incorrect N!");
|
---|
978 | ap.assert(ap.len(f)>=(int)Math.Floor((double)n/(double)2)+1, "FFTR1DInv: Length(F)<Floor(N/2)+1!");
|
---|
979 | ap.assert(math.isfinite(f[0].x), "FFTR1DInv: F contains infinite or NAN values!");
|
---|
980 | for(i=1; i<=(int)Math.Floor((double)n/(double)2)-1; i++)
|
---|
981 | {
|
---|
982 | ap.assert(math.isfinite(f[i].x) & math.isfinite(f[i].y), "FFTR1DInv: F contains infinite or NAN values!");
|
---|
983 | }
|
---|
984 | ap.assert(math.isfinite(f[(int)Math.Floor((double)n/(double)2)].x), "FFTR1DInv: F contains infinite or NAN values!");
|
---|
985 | if( n%2!=0 )
|
---|
986 | {
|
---|
987 | ap.assert(math.isfinite(f[(int)Math.Floor((double)n/(double)2)].y), "FFTR1DInv: F contains infinite or NAN values!");
|
---|
988 | }
|
---|
989 |
|
---|
990 | //
|
---|
991 | // Special case: N=1, FFT is just identity transform.
|
---|
992 | // After this block we assume that N is strictly greater than 1.
|
---|
993 | //
|
---|
994 | if( n==1 )
|
---|
995 | {
|
---|
996 | a = new double[1];
|
---|
997 | a[0] = f[0].x;
|
---|
998 | return;
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | //
|
---|
1002 | // inverse real FFT is reduced to the inverse real FHT,
|
---|
1003 | // which is reduced to the forward real FHT,
|
---|
1004 | // which is reduced to the forward real FFT.
|
---|
1005 | //
|
---|
1006 | // Don't worry, it is really compact and efficient reduction :)
|
---|
1007 | //
|
---|
1008 | h = new double[n];
|
---|
1009 | a = new double[n];
|
---|
1010 | h[0] = f[0].x;
|
---|
1011 | for(i=1; i<=(int)Math.Floor((double)n/(double)2)-1; i++)
|
---|
1012 | {
|
---|
1013 | h[i] = f[i].x-f[i].y;
|
---|
1014 | h[n-i] = f[i].x+f[i].y;
|
---|
1015 | }
|
---|
1016 | if( n%2==0 )
|
---|
1017 | {
|
---|
1018 | h[(int)Math.Floor((double)n/(double)2)] = f[(int)Math.Floor((double)n/(double)2)].x;
|
---|
1019 | }
|
---|
1020 | else
|
---|
1021 | {
|
---|
1022 | h[(int)Math.Floor((double)n/(double)2)] = f[(int)Math.Floor((double)n/(double)2)].x-f[(int)Math.Floor((double)n/(double)2)].y;
|
---|
1023 | h[(int)Math.Floor((double)n/(double)2)+1] = f[(int)Math.Floor((double)n/(double)2)].x+f[(int)Math.Floor((double)n/(double)2)].y;
|
---|
1024 | }
|
---|
1025 | fftr1d(h, n, ref fh);
|
---|
1026 | for(i=0; i<=n-1; i++)
|
---|
1027 | {
|
---|
1028 | a[i] = (fh[i].x-fh[i].y)/n;
|
---|
1029 | }
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 |
|
---|
1033 | /*************************************************************************
|
---|
1034 | Internal subroutine. Never call it directly!
|
---|
1035 |
|
---|
1036 |
|
---|
1037 | -- ALGLIB --
|
---|
1038 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
1039 | *************************************************************************/
|
---|
1040 | public static void fftr1dinternaleven(ref double[] a,
|
---|
1041 | int n,
|
---|
1042 | ref double[] buf,
|
---|
1043 | ftbase.ftplan plan)
|
---|
1044 | {
|
---|
1045 | double x = 0;
|
---|
1046 | double y = 0;
|
---|
1047 | int i = 0;
|
---|
1048 | int n2 = 0;
|
---|
1049 | int idx = 0;
|
---|
1050 | complex hn = 0;
|
---|
1051 | complex hmnc = 0;
|
---|
1052 | complex v = 0;
|
---|
1053 | int i_ = 0;
|
---|
1054 |
|
---|
1055 | ap.assert(n>0 & n%2==0, "FFTR1DEvenInplace: incorrect N!");
|
---|
1056 |
|
---|
1057 | //
|
---|
1058 | // Special cases:
|
---|
1059 | // * N=2
|
---|
1060 | //
|
---|
1061 | // After this block we assume that N is strictly greater than 2
|
---|
1062 | //
|
---|
1063 | if( n==2 )
|
---|
1064 | {
|
---|
1065 | x = a[0]+a[1];
|
---|
1066 | y = a[0]-a[1];
|
---|
1067 | a[0] = x;
|
---|
1068 | a[1] = y;
|
---|
1069 | return;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | //
|
---|
1073 | // even-size real FFT, use reduction to the complex task
|
---|
1074 | //
|
---|
1075 | n2 = n/2;
|
---|
1076 | for(i_=0; i_<=n-1;i_++)
|
---|
1077 | {
|
---|
1078 | buf[i_] = a[i_];
|
---|
1079 | }
|
---|
1080 | ftbase.ftbaseexecuteplan(ref buf, 0, n2, plan);
|
---|
1081 | a[0] = buf[0]+buf[1];
|
---|
1082 | for(i=1; i<=n2-1; i++)
|
---|
1083 | {
|
---|
1084 | idx = 2*(i%n2);
|
---|
1085 | hn.x = buf[idx+0];
|
---|
1086 | hn.y = buf[idx+1];
|
---|
1087 | idx = 2*(n2-i);
|
---|
1088 | hmnc.x = buf[idx+0];
|
---|
1089 | hmnc.y = -buf[idx+1];
|
---|
1090 | v.x = -Math.Sin(-(2*Math.PI*i/n));
|
---|
1091 | v.y = Math.Cos(-(2*Math.PI*i/n));
|
---|
1092 | v = hn+hmnc-v*(hn-hmnc);
|
---|
1093 | a[2*i+0] = 0.5*v.x;
|
---|
1094 | a[2*i+1] = 0.5*v.y;
|
---|
1095 | }
|
---|
1096 | a[1] = buf[0]-buf[1];
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 |
|
---|
1100 | /*************************************************************************
|
---|
1101 | Internal subroutine. Never call it directly!
|
---|
1102 |
|
---|
1103 |
|
---|
1104 | -- ALGLIB --
|
---|
1105 | Copyright 01.06.2009 by Bochkanov Sergey
|
---|
1106 | *************************************************************************/
|
---|
1107 | public static void fftr1dinvinternaleven(ref double[] a,
|
---|
1108 | int n,
|
---|
1109 | ref double[] buf,
|
---|
1110 | ftbase.ftplan plan)
|
---|
1111 | {
|
---|
1112 | double x = 0;
|
---|
1113 | double y = 0;
|
---|
1114 | double t = 0;
|
---|
1115 | int i = 0;
|
---|
1116 | int n2 = 0;
|
---|
1117 |
|
---|
1118 | ap.assert(n>0 & n%2==0, "FFTR1DInvInternalEven: incorrect N!");
|
---|
1119 |
|
---|
1120 | //
|
---|
1121 | // Special cases:
|
---|
1122 | // * N=2
|
---|
1123 | //
|
---|
1124 | // After this block we assume that N is strictly greater than 2
|
---|
1125 | //
|
---|
1126 | if( n==2 )
|
---|
1127 | {
|
---|
1128 | x = 0.5*(a[0]+a[1]);
|
---|
1129 | y = 0.5*(a[0]-a[1]);
|
---|
1130 | a[0] = x;
|
---|
1131 | a[1] = y;
|
---|
1132 | return;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | //
|
---|
1136 | // inverse real FFT is reduced to the inverse real FHT,
|
---|
1137 | // which is reduced to the forward real FHT,
|
---|
1138 | // which is reduced to the forward real FFT.
|
---|
1139 | //
|
---|
1140 | // Don't worry, it is really compact and efficient reduction :)
|
---|
1141 | //
|
---|
1142 | n2 = n/2;
|
---|
1143 | buf[0] = a[0];
|
---|
1144 | for(i=1; i<=n2-1; i++)
|
---|
1145 | {
|
---|
1146 | x = a[2*i+0];
|
---|
1147 | y = a[2*i+1];
|
---|
1148 | buf[i] = x-y;
|
---|
1149 | buf[n-i] = x+y;
|
---|
1150 | }
|
---|
1151 | buf[n2] = a[1];
|
---|
1152 | fftr1dinternaleven(ref buf, n, ref a, plan);
|
---|
1153 | a[0] = buf[0]/n;
|
---|
1154 | t = (double)1/(double)n;
|
---|
1155 | for(i=1; i<=n2-1; i++)
|
---|
1156 | {
|
---|
1157 | x = buf[2*i+0];
|
---|
1158 | y = buf[2*i+1];
|
---|
1159 | a[i] = t*(x-y);
|
---|
1160 | a[n-i] = t*(x+y);
|
---|
1161 | }
|
---|
1162 | a[n2] = buf[1]/n;
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 |
|
---|
1166 | }
|
---|
1167 | public class conv
|
---|
1168 | {
|
---|
1169 | /*************************************************************************
|
---|
1170 | 1-dimensional complex convolution.
|
---|
1171 |
|
---|
1172 | For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
|
---|
1173 | choose between three implementations: straightforward O(M*N) formula for
|
---|
1174 | very small N (or M), overlap-add algorithm for cases where max(M,N) is
|
---|
1175 | significantly larger than min(M,N), but O(M*N) algorithm is too slow, and
|
---|
1176 | general FFT-based formula for cases where two previois algorithms are too
|
---|
1177 | slow.
|
---|
1178 |
|
---|
1179 | Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
|
---|
1180 |
|
---|
1181 | INPUT PARAMETERS
|
---|
1182 | A - array[0..M-1] - complex function to be transformed
|
---|
1183 | M - problem size
|
---|
1184 | B - array[0..N-1] - complex function to be transformed
|
---|
1185 | N - problem size
|
---|
1186 |
|
---|
1187 | OUTPUT PARAMETERS
|
---|
1188 | R - convolution: A*B. array[0..N+M-2].
|
---|
1189 |
|
---|
1190 | NOTE:
|
---|
1191 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
1192 | functions have non-zero values at negative T's, you can still use this
|
---|
1193 | subroutine - just shift its result correspondingly.
|
---|
1194 |
|
---|
1195 | -- ALGLIB --
|
---|
1196 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1197 | *************************************************************************/
|
---|
1198 | public static void convc1d(complex[] a,
|
---|
1199 | int m,
|
---|
1200 | complex[] b,
|
---|
1201 | int n,
|
---|
1202 | ref complex[] r)
|
---|
1203 | {
|
---|
1204 | r = new complex[0];
|
---|
1205 |
|
---|
1206 | ap.assert(n>0 & m>0, "ConvC1D: incorrect N or M!");
|
---|
1207 |
|
---|
1208 | //
|
---|
1209 | // normalize task: make M>=N,
|
---|
1210 | // so A will be longer that B.
|
---|
1211 | //
|
---|
1212 | if( m<n )
|
---|
1213 | {
|
---|
1214 | convc1d(b, n, a, m, ref r);
|
---|
1215 | return;
|
---|
1216 | }
|
---|
1217 | convc1dx(a, m, b, n, false, -1, 0, ref r);
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 |
|
---|
1221 | /*************************************************************************
|
---|
1222 | 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
|
---|
1223 |
|
---|
1224 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
1225 |
|
---|
1226 | INPUT PARAMETERS
|
---|
1227 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
1228 | M - convolved signal length
|
---|
1229 | B - array[0..N-1] - response
|
---|
1230 | N - response length, N<=M
|
---|
1231 |
|
---|
1232 | OUTPUT PARAMETERS
|
---|
1233 | R - deconvolved signal. array[0..M-N].
|
---|
1234 |
|
---|
1235 | NOTE:
|
---|
1236 | deconvolution is unstable process and may result in division by zero
|
---|
1237 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
1238 |
|
---|
1239 | NOTE:
|
---|
1240 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
1241 | functions have non-zero values at negative T's, you can still use this
|
---|
1242 | subroutine - just shift its result correspondingly.
|
---|
1243 |
|
---|
1244 | -- ALGLIB --
|
---|
1245 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1246 | *************************************************************************/
|
---|
1247 | public static void convc1dinv(complex[] a,
|
---|
1248 | int m,
|
---|
1249 | complex[] b,
|
---|
1250 | int n,
|
---|
1251 | ref complex[] r)
|
---|
1252 | {
|
---|
1253 | int i = 0;
|
---|
1254 | int p = 0;
|
---|
1255 | double[] buf = new double[0];
|
---|
1256 | double[] buf2 = new double[0];
|
---|
1257 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1258 | complex c1 = 0;
|
---|
1259 | complex c2 = 0;
|
---|
1260 | complex c3 = 0;
|
---|
1261 | double t = 0;
|
---|
1262 |
|
---|
1263 | r = new complex[0];
|
---|
1264 |
|
---|
1265 | ap.assert((n>0 & m>0) & n<=m, "ConvC1DInv: incorrect N or M!");
|
---|
1266 | p = ftbase.ftbasefindsmooth(m);
|
---|
1267 | ftbase.ftbasegeneratecomplexfftplan(p, plan);
|
---|
1268 | buf = new double[2*p];
|
---|
1269 | for(i=0; i<=m-1; i++)
|
---|
1270 | {
|
---|
1271 | buf[2*i+0] = a[i].x;
|
---|
1272 | buf[2*i+1] = a[i].y;
|
---|
1273 | }
|
---|
1274 | for(i=m; i<=p-1; i++)
|
---|
1275 | {
|
---|
1276 | buf[2*i+0] = 0;
|
---|
1277 | buf[2*i+1] = 0;
|
---|
1278 | }
|
---|
1279 | buf2 = new double[2*p];
|
---|
1280 | for(i=0; i<=n-1; i++)
|
---|
1281 | {
|
---|
1282 | buf2[2*i+0] = b[i].x;
|
---|
1283 | buf2[2*i+1] = b[i].y;
|
---|
1284 | }
|
---|
1285 | for(i=n; i<=p-1; i++)
|
---|
1286 | {
|
---|
1287 | buf2[2*i+0] = 0;
|
---|
1288 | buf2[2*i+1] = 0;
|
---|
1289 | }
|
---|
1290 | ftbase.ftbaseexecuteplan(ref buf, 0, p, plan);
|
---|
1291 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, plan);
|
---|
1292 | for(i=0; i<=p-1; i++)
|
---|
1293 | {
|
---|
1294 | c1.x = buf[2*i+0];
|
---|
1295 | c1.y = buf[2*i+1];
|
---|
1296 | c2.x = buf2[2*i+0];
|
---|
1297 | c2.y = buf2[2*i+1];
|
---|
1298 | c3 = c1/c2;
|
---|
1299 | buf[2*i+0] = c3.x;
|
---|
1300 | buf[2*i+1] = -c3.y;
|
---|
1301 | }
|
---|
1302 | ftbase.ftbaseexecuteplan(ref buf, 0, p, plan);
|
---|
1303 | t = (double)1/(double)p;
|
---|
1304 | r = new complex[m-n+1];
|
---|
1305 | for(i=0; i<=m-n; i++)
|
---|
1306 | {
|
---|
1307 | r[i].x = t*buf[2*i+0];
|
---|
1308 | r[i].y = -(t*buf[2*i+1]);
|
---|
1309 | }
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 |
|
---|
1313 | /*************************************************************************
|
---|
1314 | 1-dimensional circular complex convolution.
|
---|
1315 |
|
---|
1316 | For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
|
---|
1317 | complexity for any M/N.
|
---|
1318 |
|
---|
1319 | IMPORTANT: normal convolution is commutative, i.e. it is symmetric -
|
---|
1320 | conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a
|
---|
1321 | signal, periodic function, and another - R - is a response, non-periodic
|
---|
1322 | function with limited length.
|
---|
1323 |
|
---|
1324 | INPUT PARAMETERS
|
---|
1325 | S - array[0..M-1] - complex periodic signal
|
---|
1326 | M - problem size
|
---|
1327 | B - array[0..N-1] - complex non-periodic response
|
---|
1328 | N - problem size
|
---|
1329 |
|
---|
1330 | OUTPUT PARAMETERS
|
---|
1331 | R - convolution: A*B. array[0..M-1].
|
---|
1332 |
|
---|
1333 | NOTE:
|
---|
1334 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
1335 | negative T's, you can still use this subroutine - just shift its result
|
---|
1336 | correspondingly.
|
---|
1337 |
|
---|
1338 | -- ALGLIB --
|
---|
1339 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1340 | *************************************************************************/
|
---|
1341 | public static void convc1dcircular(complex[] s,
|
---|
1342 | int m,
|
---|
1343 | complex[] r,
|
---|
1344 | int n,
|
---|
1345 | ref complex[] c)
|
---|
1346 | {
|
---|
1347 | complex[] buf = new complex[0];
|
---|
1348 | int i1 = 0;
|
---|
1349 | int i2 = 0;
|
---|
1350 | int j2 = 0;
|
---|
1351 | int i_ = 0;
|
---|
1352 | int i1_ = 0;
|
---|
1353 |
|
---|
1354 | c = new complex[0];
|
---|
1355 |
|
---|
1356 | ap.assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
1357 |
|
---|
1358 | //
|
---|
1359 | // normalize task: make M>=N,
|
---|
1360 | // so A will be longer (at least - not shorter) that B.
|
---|
1361 | //
|
---|
1362 | if( m<n )
|
---|
1363 | {
|
---|
1364 | buf = new complex[m];
|
---|
1365 | for(i1=0; i1<=m-1; i1++)
|
---|
1366 | {
|
---|
1367 | buf[i1] = 0;
|
---|
1368 | }
|
---|
1369 | i1 = 0;
|
---|
1370 | while( i1<n )
|
---|
1371 | {
|
---|
1372 | i2 = Math.Min(i1+m-1, n-1);
|
---|
1373 | j2 = i2-i1;
|
---|
1374 | i1_ = (i1) - (0);
|
---|
1375 | for(i_=0; i_<=j2;i_++)
|
---|
1376 | {
|
---|
1377 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
1378 | }
|
---|
1379 | i1 = i1+m;
|
---|
1380 | }
|
---|
1381 | convc1dcircular(s, m, buf, m, ref c);
|
---|
1382 | return;
|
---|
1383 | }
|
---|
1384 | convc1dx(s, m, r, n, true, -1, 0, ref c);
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 |
|
---|
1388 | /*************************************************************************
|
---|
1389 | 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
|
---|
1390 |
|
---|
1391 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
1392 |
|
---|
1393 | INPUT PARAMETERS
|
---|
1394 | A - array[0..M-1] - convolved periodic signal, A = conv(R, B)
|
---|
1395 | M - convolved signal length
|
---|
1396 | B - array[0..N-1] - non-periodic response
|
---|
1397 | N - response length
|
---|
1398 |
|
---|
1399 | OUTPUT PARAMETERS
|
---|
1400 | R - deconvolved signal. array[0..M-1].
|
---|
1401 |
|
---|
1402 | NOTE:
|
---|
1403 | deconvolution is unstable process and may result in division by zero
|
---|
1404 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
1405 |
|
---|
1406 | NOTE:
|
---|
1407 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
1408 | negative T's, you can still use this subroutine - just shift its result
|
---|
1409 | correspondingly.
|
---|
1410 |
|
---|
1411 | -- ALGLIB --
|
---|
1412 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1413 | *************************************************************************/
|
---|
1414 | public static void convc1dcircularinv(complex[] a,
|
---|
1415 | int m,
|
---|
1416 | complex[] b,
|
---|
1417 | int n,
|
---|
1418 | ref complex[] r)
|
---|
1419 | {
|
---|
1420 | int i = 0;
|
---|
1421 | int i1 = 0;
|
---|
1422 | int i2 = 0;
|
---|
1423 | int j2 = 0;
|
---|
1424 | double[] buf = new double[0];
|
---|
1425 | double[] buf2 = new double[0];
|
---|
1426 | complex[] cbuf = new complex[0];
|
---|
1427 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1428 | complex c1 = 0;
|
---|
1429 | complex c2 = 0;
|
---|
1430 | complex c3 = 0;
|
---|
1431 | double t = 0;
|
---|
1432 | int i_ = 0;
|
---|
1433 | int i1_ = 0;
|
---|
1434 |
|
---|
1435 | r = new complex[0];
|
---|
1436 |
|
---|
1437 | ap.assert(n>0 & m>0, "ConvC1DCircularInv: incorrect N or M!");
|
---|
1438 |
|
---|
1439 | //
|
---|
1440 | // normalize task: make M>=N,
|
---|
1441 | // so A will be longer (at least - not shorter) that B.
|
---|
1442 | //
|
---|
1443 | if( m<n )
|
---|
1444 | {
|
---|
1445 | cbuf = new complex[m];
|
---|
1446 | for(i=0; i<=m-1; i++)
|
---|
1447 | {
|
---|
1448 | cbuf[i] = 0;
|
---|
1449 | }
|
---|
1450 | i1 = 0;
|
---|
1451 | while( i1<n )
|
---|
1452 | {
|
---|
1453 | i2 = Math.Min(i1+m-1, n-1);
|
---|
1454 | j2 = i2-i1;
|
---|
1455 | i1_ = (i1) - (0);
|
---|
1456 | for(i_=0; i_<=j2;i_++)
|
---|
1457 | {
|
---|
1458 | cbuf[i_] = cbuf[i_] + b[i_+i1_];
|
---|
1459 | }
|
---|
1460 | i1 = i1+m;
|
---|
1461 | }
|
---|
1462 | convc1dcircularinv(a, m, cbuf, m, ref r);
|
---|
1463 | return;
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 | //
|
---|
1467 | // Task is normalized
|
---|
1468 | //
|
---|
1469 | ftbase.ftbasegeneratecomplexfftplan(m, plan);
|
---|
1470 | buf = new double[2*m];
|
---|
1471 | for(i=0; i<=m-1; i++)
|
---|
1472 | {
|
---|
1473 | buf[2*i+0] = a[i].x;
|
---|
1474 | buf[2*i+1] = a[i].y;
|
---|
1475 | }
|
---|
1476 | buf2 = new double[2*m];
|
---|
1477 | for(i=0; i<=n-1; i++)
|
---|
1478 | {
|
---|
1479 | buf2[2*i+0] = b[i].x;
|
---|
1480 | buf2[2*i+1] = b[i].y;
|
---|
1481 | }
|
---|
1482 | for(i=n; i<=m-1; i++)
|
---|
1483 | {
|
---|
1484 | buf2[2*i+0] = 0;
|
---|
1485 | buf2[2*i+1] = 0;
|
---|
1486 | }
|
---|
1487 | ftbase.ftbaseexecuteplan(ref buf, 0, m, plan);
|
---|
1488 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, plan);
|
---|
1489 | for(i=0; i<=m-1; i++)
|
---|
1490 | {
|
---|
1491 | c1.x = buf[2*i+0];
|
---|
1492 | c1.y = buf[2*i+1];
|
---|
1493 | c2.x = buf2[2*i+0];
|
---|
1494 | c2.y = buf2[2*i+1];
|
---|
1495 | c3 = c1/c2;
|
---|
1496 | buf[2*i+0] = c3.x;
|
---|
1497 | buf[2*i+1] = -c3.y;
|
---|
1498 | }
|
---|
1499 | ftbase.ftbaseexecuteplan(ref buf, 0, m, plan);
|
---|
1500 | t = (double)1/(double)m;
|
---|
1501 | r = new complex[m];
|
---|
1502 | for(i=0; i<=m-1; i++)
|
---|
1503 | {
|
---|
1504 | r[i].x = t*buf[2*i+0];
|
---|
1505 | r[i].y = -(t*buf[2*i+1]);
|
---|
1506 | }
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 |
|
---|
1510 | /*************************************************************************
|
---|
1511 | 1-dimensional real convolution.
|
---|
1512 |
|
---|
1513 | Analogous to ConvC1D(), see ConvC1D() comments for more details.
|
---|
1514 |
|
---|
1515 | INPUT PARAMETERS
|
---|
1516 | A - array[0..M-1] - real function to be transformed
|
---|
1517 | M - problem size
|
---|
1518 | B - array[0..N-1] - real function to be transformed
|
---|
1519 | N - problem size
|
---|
1520 |
|
---|
1521 | OUTPUT PARAMETERS
|
---|
1522 | R - convolution: A*B. array[0..N+M-2].
|
---|
1523 |
|
---|
1524 | NOTE:
|
---|
1525 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
1526 | functions have non-zero values at negative T's, you can still use this
|
---|
1527 | subroutine - just shift its result correspondingly.
|
---|
1528 |
|
---|
1529 | -- ALGLIB --
|
---|
1530 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1531 | *************************************************************************/
|
---|
1532 | public static void convr1d(double[] a,
|
---|
1533 | int m,
|
---|
1534 | double[] b,
|
---|
1535 | int n,
|
---|
1536 | ref double[] r)
|
---|
1537 | {
|
---|
1538 | r = new double[0];
|
---|
1539 |
|
---|
1540 | ap.assert(n>0 & m>0, "ConvR1D: incorrect N or M!");
|
---|
1541 |
|
---|
1542 | //
|
---|
1543 | // normalize task: make M>=N,
|
---|
1544 | // so A will be longer that B.
|
---|
1545 | //
|
---|
1546 | if( m<n )
|
---|
1547 | {
|
---|
1548 | convr1d(b, n, a, m, ref r);
|
---|
1549 | return;
|
---|
1550 | }
|
---|
1551 | convr1dx(a, m, b, n, false, -1, 0, ref r);
|
---|
1552 | }
|
---|
1553 |
|
---|
1554 |
|
---|
1555 | /*************************************************************************
|
---|
1556 | 1-dimensional real deconvolution (inverse of ConvC1D()).
|
---|
1557 |
|
---|
1558 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
1559 |
|
---|
1560 | INPUT PARAMETERS
|
---|
1561 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
1562 | M - convolved signal length
|
---|
1563 | B - array[0..N-1] - response
|
---|
1564 | N - response length, N<=M
|
---|
1565 |
|
---|
1566 | OUTPUT PARAMETERS
|
---|
1567 | R - deconvolved signal. array[0..M-N].
|
---|
1568 |
|
---|
1569 | NOTE:
|
---|
1570 | deconvolution is unstable process and may result in division by zero
|
---|
1571 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
1572 |
|
---|
1573 | NOTE:
|
---|
1574 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
1575 | functions have non-zero values at negative T's, you can still use this
|
---|
1576 | subroutine - just shift its result correspondingly.
|
---|
1577 |
|
---|
1578 | -- ALGLIB --
|
---|
1579 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1580 | *************************************************************************/
|
---|
1581 | public static void convr1dinv(double[] a,
|
---|
1582 | int m,
|
---|
1583 | double[] b,
|
---|
1584 | int n,
|
---|
1585 | ref double[] r)
|
---|
1586 | {
|
---|
1587 | int i = 0;
|
---|
1588 | int p = 0;
|
---|
1589 | double[] buf = new double[0];
|
---|
1590 | double[] buf2 = new double[0];
|
---|
1591 | double[] buf3 = new double[0];
|
---|
1592 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1593 | complex c1 = 0;
|
---|
1594 | complex c2 = 0;
|
---|
1595 | complex c3 = 0;
|
---|
1596 | int i_ = 0;
|
---|
1597 |
|
---|
1598 | r = new double[0];
|
---|
1599 |
|
---|
1600 | ap.assert((n>0 & m>0) & n<=m, "ConvR1DInv: incorrect N or M!");
|
---|
1601 | p = ftbase.ftbasefindsmootheven(m);
|
---|
1602 | buf = new double[p];
|
---|
1603 | for(i_=0; i_<=m-1;i_++)
|
---|
1604 | {
|
---|
1605 | buf[i_] = a[i_];
|
---|
1606 | }
|
---|
1607 | for(i=m; i<=p-1; i++)
|
---|
1608 | {
|
---|
1609 | buf[i] = 0;
|
---|
1610 | }
|
---|
1611 | buf2 = new double[p];
|
---|
1612 | for(i_=0; i_<=n-1;i_++)
|
---|
1613 | {
|
---|
1614 | buf2[i_] = b[i_];
|
---|
1615 | }
|
---|
1616 | for(i=n; i<=p-1; i++)
|
---|
1617 | {
|
---|
1618 | buf2[i] = 0;
|
---|
1619 | }
|
---|
1620 | buf3 = new double[p];
|
---|
1621 | ftbase.ftbasegeneratecomplexfftplan(p/2, plan);
|
---|
1622 | fft.fftr1dinternaleven(ref buf, p, ref buf3, plan);
|
---|
1623 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, plan);
|
---|
1624 | buf[0] = buf[0]/buf2[0];
|
---|
1625 | buf[1] = buf[1]/buf2[1];
|
---|
1626 | for(i=1; i<=p/2-1; i++)
|
---|
1627 | {
|
---|
1628 | c1.x = buf[2*i+0];
|
---|
1629 | c1.y = buf[2*i+1];
|
---|
1630 | c2.x = buf2[2*i+0];
|
---|
1631 | c2.y = buf2[2*i+1];
|
---|
1632 | c3 = c1/c2;
|
---|
1633 | buf[2*i+0] = c3.x;
|
---|
1634 | buf[2*i+1] = c3.y;
|
---|
1635 | }
|
---|
1636 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, plan);
|
---|
1637 | r = new double[m-n+1];
|
---|
1638 | for(i_=0; i_<=m-n;i_++)
|
---|
1639 | {
|
---|
1640 | r[i_] = buf[i_];
|
---|
1641 | }
|
---|
1642 | }
|
---|
1643 |
|
---|
1644 |
|
---|
1645 | /*************************************************************************
|
---|
1646 | 1-dimensional circular real convolution.
|
---|
1647 |
|
---|
1648 | Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
|
---|
1649 |
|
---|
1650 | INPUT PARAMETERS
|
---|
1651 | S - array[0..M-1] - real signal
|
---|
1652 | M - problem size
|
---|
1653 | B - array[0..N-1] - real response
|
---|
1654 | N - problem size
|
---|
1655 |
|
---|
1656 | OUTPUT PARAMETERS
|
---|
1657 | R - convolution: A*B. array[0..M-1].
|
---|
1658 |
|
---|
1659 | NOTE:
|
---|
1660 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
1661 | negative T's, you can still use this subroutine - just shift its result
|
---|
1662 | correspondingly.
|
---|
1663 |
|
---|
1664 | -- ALGLIB --
|
---|
1665 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1666 | *************************************************************************/
|
---|
1667 | public static void convr1dcircular(double[] s,
|
---|
1668 | int m,
|
---|
1669 | double[] r,
|
---|
1670 | int n,
|
---|
1671 | ref double[] c)
|
---|
1672 | {
|
---|
1673 | double[] buf = new double[0];
|
---|
1674 | int i1 = 0;
|
---|
1675 | int i2 = 0;
|
---|
1676 | int j2 = 0;
|
---|
1677 | int i_ = 0;
|
---|
1678 | int i1_ = 0;
|
---|
1679 |
|
---|
1680 | c = new double[0];
|
---|
1681 |
|
---|
1682 | ap.assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
1683 |
|
---|
1684 | //
|
---|
1685 | // normalize task: make M>=N,
|
---|
1686 | // so A will be longer (at least - not shorter) that B.
|
---|
1687 | //
|
---|
1688 | if( m<n )
|
---|
1689 | {
|
---|
1690 | buf = new double[m];
|
---|
1691 | for(i1=0; i1<=m-1; i1++)
|
---|
1692 | {
|
---|
1693 | buf[i1] = 0;
|
---|
1694 | }
|
---|
1695 | i1 = 0;
|
---|
1696 | while( i1<n )
|
---|
1697 | {
|
---|
1698 | i2 = Math.Min(i1+m-1, n-1);
|
---|
1699 | j2 = i2-i1;
|
---|
1700 | i1_ = (i1) - (0);
|
---|
1701 | for(i_=0; i_<=j2;i_++)
|
---|
1702 | {
|
---|
1703 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
1704 | }
|
---|
1705 | i1 = i1+m;
|
---|
1706 | }
|
---|
1707 | convr1dcircular(s, m, buf, m, ref c);
|
---|
1708 | return;
|
---|
1709 | }
|
---|
1710 |
|
---|
1711 | //
|
---|
1712 | // reduce to usual convolution
|
---|
1713 | //
|
---|
1714 | convr1dx(s, m, r, n, true, -1, 0, ref c);
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 |
|
---|
1718 | /*************************************************************************
|
---|
1719 | 1-dimensional complex deconvolution (inverse of ConvC1D()).
|
---|
1720 |
|
---|
1721 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
1722 |
|
---|
1723 | INPUT PARAMETERS
|
---|
1724 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
1725 | M - convolved signal length
|
---|
1726 | B - array[0..N-1] - response
|
---|
1727 | N - response length
|
---|
1728 |
|
---|
1729 | OUTPUT PARAMETERS
|
---|
1730 | R - deconvolved signal. array[0..M-N].
|
---|
1731 |
|
---|
1732 | NOTE:
|
---|
1733 | deconvolution is unstable process and may result in division by zero
|
---|
1734 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
1735 |
|
---|
1736 | NOTE:
|
---|
1737 | It is assumed that B is zero at T<0. If it has non-zero values at
|
---|
1738 | negative T's, you can still use this subroutine - just shift its result
|
---|
1739 | correspondingly.
|
---|
1740 |
|
---|
1741 | -- ALGLIB --
|
---|
1742 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1743 | *************************************************************************/
|
---|
1744 | public static void convr1dcircularinv(double[] a,
|
---|
1745 | int m,
|
---|
1746 | double[] b,
|
---|
1747 | int n,
|
---|
1748 | ref double[] r)
|
---|
1749 | {
|
---|
1750 | int i = 0;
|
---|
1751 | int i1 = 0;
|
---|
1752 | int i2 = 0;
|
---|
1753 | int j2 = 0;
|
---|
1754 | double[] buf = new double[0];
|
---|
1755 | double[] buf2 = new double[0];
|
---|
1756 | double[] buf3 = new double[0];
|
---|
1757 | complex[] cbuf = new complex[0];
|
---|
1758 | complex[] cbuf2 = new complex[0];
|
---|
1759 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1760 | complex c1 = 0;
|
---|
1761 | complex c2 = 0;
|
---|
1762 | complex c3 = 0;
|
---|
1763 | int i_ = 0;
|
---|
1764 | int i1_ = 0;
|
---|
1765 |
|
---|
1766 | r = new double[0];
|
---|
1767 |
|
---|
1768 | ap.assert(n>0 & m>0, "ConvR1DCircularInv: incorrect N or M!");
|
---|
1769 |
|
---|
1770 | //
|
---|
1771 | // normalize task: make M>=N,
|
---|
1772 | // so A will be longer (at least - not shorter) that B.
|
---|
1773 | //
|
---|
1774 | if( m<n )
|
---|
1775 | {
|
---|
1776 | buf = new double[m];
|
---|
1777 | for(i=0; i<=m-1; i++)
|
---|
1778 | {
|
---|
1779 | buf[i] = 0;
|
---|
1780 | }
|
---|
1781 | i1 = 0;
|
---|
1782 | while( i1<n )
|
---|
1783 | {
|
---|
1784 | i2 = Math.Min(i1+m-1, n-1);
|
---|
1785 | j2 = i2-i1;
|
---|
1786 | i1_ = (i1) - (0);
|
---|
1787 | for(i_=0; i_<=j2;i_++)
|
---|
1788 | {
|
---|
1789 | buf[i_] = buf[i_] + b[i_+i1_];
|
---|
1790 | }
|
---|
1791 | i1 = i1+m;
|
---|
1792 | }
|
---|
1793 | convr1dcircularinv(a, m, buf, m, ref r);
|
---|
1794 | return;
|
---|
1795 | }
|
---|
1796 |
|
---|
1797 | //
|
---|
1798 | // Task is normalized
|
---|
1799 | //
|
---|
1800 | if( m%2==0 )
|
---|
1801 | {
|
---|
1802 |
|
---|
1803 | //
|
---|
1804 | // size is even, use fast even-size FFT
|
---|
1805 | //
|
---|
1806 | buf = new double[m];
|
---|
1807 | for(i_=0; i_<=m-1;i_++)
|
---|
1808 | {
|
---|
1809 | buf[i_] = a[i_];
|
---|
1810 | }
|
---|
1811 | buf2 = new double[m];
|
---|
1812 | for(i_=0; i_<=n-1;i_++)
|
---|
1813 | {
|
---|
1814 | buf2[i_] = b[i_];
|
---|
1815 | }
|
---|
1816 | for(i=n; i<=m-1; i++)
|
---|
1817 | {
|
---|
1818 | buf2[i] = 0;
|
---|
1819 | }
|
---|
1820 | buf3 = new double[m];
|
---|
1821 | ftbase.ftbasegeneratecomplexfftplan(m/2, plan);
|
---|
1822 | fft.fftr1dinternaleven(ref buf, m, ref buf3, plan);
|
---|
1823 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, plan);
|
---|
1824 | buf[0] = buf[0]/buf2[0];
|
---|
1825 | buf[1] = buf[1]/buf2[1];
|
---|
1826 | for(i=1; i<=m/2-1; i++)
|
---|
1827 | {
|
---|
1828 | c1.x = buf[2*i+0];
|
---|
1829 | c1.y = buf[2*i+1];
|
---|
1830 | c2.x = buf2[2*i+0];
|
---|
1831 | c2.y = buf2[2*i+1];
|
---|
1832 | c3 = c1/c2;
|
---|
1833 | buf[2*i+0] = c3.x;
|
---|
1834 | buf[2*i+1] = c3.y;
|
---|
1835 | }
|
---|
1836 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, plan);
|
---|
1837 | r = new double[m];
|
---|
1838 | for(i_=0; i_<=m-1;i_++)
|
---|
1839 | {
|
---|
1840 | r[i_] = buf[i_];
|
---|
1841 | }
|
---|
1842 | }
|
---|
1843 | else
|
---|
1844 | {
|
---|
1845 |
|
---|
1846 | //
|
---|
1847 | // odd-size, use general real FFT
|
---|
1848 | //
|
---|
1849 | fft.fftr1d(a, m, ref cbuf);
|
---|
1850 | buf2 = new double[m];
|
---|
1851 | for(i_=0; i_<=n-1;i_++)
|
---|
1852 | {
|
---|
1853 | buf2[i_] = b[i_];
|
---|
1854 | }
|
---|
1855 | for(i=n; i<=m-1; i++)
|
---|
1856 | {
|
---|
1857 | buf2[i] = 0;
|
---|
1858 | }
|
---|
1859 | fft.fftr1d(buf2, m, ref cbuf2);
|
---|
1860 | for(i=0; i<=(int)Math.Floor((double)m/(double)2); i++)
|
---|
1861 | {
|
---|
1862 | cbuf[i] = cbuf[i]/cbuf2[i];
|
---|
1863 | }
|
---|
1864 | fft.fftr1dinv(cbuf, m, ref r);
|
---|
1865 | }
|
---|
1866 | }
|
---|
1867 |
|
---|
1868 |
|
---|
1869 | /*************************************************************************
|
---|
1870 | 1-dimensional complex convolution.
|
---|
1871 |
|
---|
1872 | Extended subroutine which allows to choose convolution algorithm.
|
---|
1873 | Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular().
|
---|
1874 |
|
---|
1875 | INPUT PARAMETERS
|
---|
1876 | A - array[0..M-1] - complex function to be transformed
|
---|
1877 | M - problem size
|
---|
1878 | B - array[0..N-1] - complex function to be transformed
|
---|
1879 | N - problem size, N<=M
|
---|
1880 | Alg - algorithm type:
|
---|
1881 | *-2 auto-select Q for overlap-add
|
---|
1882 | *-1 auto-select algorithm and parameters
|
---|
1883 | * 0 straightforward formula for small N's
|
---|
1884 | * 1 general FFT-based code
|
---|
1885 | * 2 overlap-add with length Q
|
---|
1886 | Q - length for overlap-add
|
---|
1887 |
|
---|
1888 | OUTPUT PARAMETERS
|
---|
1889 | R - convolution: A*B. array[0..N+M-1].
|
---|
1890 |
|
---|
1891 | -- ALGLIB --
|
---|
1892 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1893 | *************************************************************************/
|
---|
1894 | public static void convc1dx(complex[] a,
|
---|
1895 | int m,
|
---|
1896 | complex[] b,
|
---|
1897 | int n,
|
---|
1898 | bool circular,
|
---|
1899 | int alg,
|
---|
1900 | int q,
|
---|
1901 | ref complex[] r)
|
---|
1902 | {
|
---|
1903 | int i = 0;
|
---|
1904 | int j = 0;
|
---|
1905 | int p = 0;
|
---|
1906 | int ptotal = 0;
|
---|
1907 | int i1 = 0;
|
---|
1908 | int i2 = 0;
|
---|
1909 | int j1 = 0;
|
---|
1910 | int j2 = 0;
|
---|
1911 | complex[] bbuf = new complex[0];
|
---|
1912 | complex v = 0;
|
---|
1913 | double ax = 0;
|
---|
1914 | double ay = 0;
|
---|
1915 | double bx = 0;
|
---|
1916 | double by = 0;
|
---|
1917 | double t = 0;
|
---|
1918 | double tx = 0;
|
---|
1919 | double ty = 0;
|
---|
1920 | double flopcand = 0;
|
---|
1921 | double flopbest = 0;
|
---|
1922 | int algbest = 0;
|
---|
1923 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1924 | double[] buf = new double[0];
|
---|
1925 | double[] buf2 = new double[0];
|
---|
1926 | int i_ = 0;
|
---|
1927 | int i1_ = 0;
|
---|
1928 |
|
---|
1929 | r = new complex[0];
|
---|
1930 |
|
---|
1931 | ap.assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
1932 | ap.assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
1933 |
|
---|
1934 | //
|
---|
1935 | // Auto-select
|
---|
1936 | //
|
---|
1937 | if( alg==-1 | alg==-2 )
|
---|
1938 | {
|
---|
1939 |
|
---|
1940 | //
|
---|
1941 | // Initial candidate: straightforward implementation.
|
---|
1942 | //
|
---|
1943 | // If we want to use auto-fitted overlap-add,
|
---|
1944 | // flop count is initialized by large real number - to force
|
---|
1945 | // another algorithm selection
|
---|
1946 | //
|
---|
1947 | algbest = 0;
|
---|
1948 | if( alg==-1 )
|
---|
1949 | {
|
---|
1950 | flopbest = 2*m*n;
|
---|
1951 | }
|
---|
1952 | else
|
---|
1953 | {
|
---|
1954 | flopbest = math.maxrealnumber;
|
---|
1955 | }
|
---|
1956 |
|
---|
1957 | //
|
---|
1958 | // Another candidate - generic FFT code
|
---|
1959 | //
|
---|
1960 | if( alg==-1 )
|
---|
1961 | {
|
---|
1962 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
1963 | {
|
---|
1964 |
|
---|
1965 | //
|
---|
1966 | // special code for circular convolution of a sequence with a smooth length
|
---|
1967 | //
|
---|
1968 | flopcand = 3*ftbase.ftbasegetflopestimate(m)+6*m;
|
---|
1969 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1970 | {
|
---|
1971 | algbest = 1;
|
---|
1972 | flopbest = flopcand;
|
---|
1973 | }
|
---|
1974 | }
|
---|
1975 | else
|
---|
1976 | {
|
---|
1977 |
|
---|
1978 | //
|
---|
1979 | // general cyclic/non-cyclic convolution
|
---|
1980 | //
|
---|
1981 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
1982 | flopcand = 3*ftbase.ftbasegetflopestimate(p)+6*p;
|
---|
1983 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1984 | {
|
---|
1985 | algbest = 1;
|
---|
1986 | flopbest = flopcand;
|
---|
1987 | }
|
---|
1988 | }
|
---|
1989 | }
|
---|
1990 |
|
---|
1991 | //
|
---|
1992 | // Another candidate - overlap-add
|
---|
1993 | //
|
---|
1994 | q = 1;
|
---|
1995 | ptotal = 1;
|
---|
1996 | while( ptotal<n )
|
---|
1997 | {
|
---|
1998 | ptotal = ptotal*2;
|
---|
1999 | }
|
---|
2000 | while( ptotal<=m+n-1 )
|
---|
2001 | {
|
---|
2002 | p = ptotal-n+1;
|
---|
2003 | flopcand = (int)Math.Ceiling((double)m/(double)p)*(2*ftbase.ftbasegetflopestimate(ptotal)+8*ptotal);
|
---|
2004 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
2005 | {
|
---|
2006 | flopbest = flopcand;
|
---|
2007 | algbest = 2;
|
---|
2008 | q = p;
|
---|
2009 | }
|
---|
2010 | ptotal = ptotal*2;
|
---|
2011 | }
|
---|
2012 | alg = algbest;
|
---|
2013 | convc1dx(a, m, b, n, circular, alg, q, ref r);
|
---|
2014 | return;
|
---|
2015 | }
|
---|
2016 |
|
---|
2017 | //
|
---|
2018 | // straightforward formula for
|
---|
2019 | // circular and non-circular convolutions.
|
---|
2020 | //
|
---|
2021 | // Very simple code, no further comments needed.
|
---|
2022 | //
|
---|
2023 | if( alg==0 )
|
---|
2024 | {
|
---|
2025 |
|
---|
2026 | //
|
---|
2027 | // Special case: N=1
|
---|
2028 | //
|
---|
2029 | if( n==1 )
|
---|
2030 | {
|
---|
2031 | r = new complex[m];
|
---|
2032 | v = b[0];
|
---|
2033 | for(i_=0; i_<=m-1;i_++)
|
---|
2034 | {
|
---|
2035 | r[i_] = v*a[i_];
|
---|
2036 | }
|
---|
2037 | return;
|
---|
2038 | }
|
---|
2039 |
|
---|
2040 | //
|
---|
2041 | // use straightforward formula
|
---|
2042 | //
|
---|
2043 | if( circular )
|
---|
2044 | {
|
---|
2045 |
|
---|
2046 | //
|
---|
2047 | // circular convolution
|
---|
2048 | //
|
---|
2049 | r = new complex[m];
|
---|
2050 | v = b[0];
|
---|
2051 | for(i_=0; i_<=m-1;i_++)
|
---|
2052 | {
|
---|
2053 | r[i_] = v*a[i_];
|
---|
2054 | }
|
---|
2055 | for(i=1; i<=n-1; i++)
|
---|
2056 | {
|
---|
2057 | v = b[i];
|
---|
2058 | i1 = 0;
|
---|
2059 | i2 = i-1;
|
---|
2060 | j1 = m-i;
|
---|
2061 | j2 = m-1;
|
---|
2062 | i1_ = (j1) - (i1);
|
---|
2063 | for(i_=i1; i_<=i2;i_++)
|
---|
2064 | {
|
---|
2065 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
2066 | }
|
---|
2067 | i1 = i;
|
---|
2068 | i2 = m-1;
|
---|
2069 | j1 = 0;
|
---|
2070 | j2 = m-i-1;
|
---|
2071 | i1_ = (j1) - (i1);
|
---|
2072 | for(i_=i1; i_<=i2;i_++)
|
---|
2073 | {
|
---|
2074 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
2075 | }
|
---|
2076 | }
|
---|
2077 | }
|
---|
2078 | else
|
---|
2079 | {
|
---|
2080 |
|
---|
2081 | //
|
---|
2082 | // non-circular convolution
|
---|
2083 | //
|
---|
2084 | r = new complex[m+n-1];
|
---|
2085 | for(i=0; i<=m+n-2; i++)
|
---|
2086 | {
|
---|
2087 | r[i] = 0;
|
---|
2088 | }
|
---|
2089 | for(i=0; i<=n-1; i++)
|
---|
2090 | {
|
---|
2091 | v = b[i];
|
---|
2092 | i1_ = (0) - (i);
|
---|
2093 | for(i_=i; i_<=i+m-1;i_++)
|
---|
2094 | {
|
---|
2095 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
2096 | }
|
---|
2097 | }
|
---|
2098 | }
|
---|
2099 | return;
|
---|
2100 | }
|
---|
2101 |
|
---|
2102 | //
|
---|
2103 | // general FFT-based code for
|
---|
2104 | // circular and non-circular convolutions.
|
---|
2105 | //
|
---|
2106 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
2107 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
2108 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
2109 | //
|
---|
2110 | // IF convolution is non-circular, we use zero-padding + FFT.
|
---|
2111 | //
|
---|
2112 | if( alg==1 )
|
---|
2113 | {
|
---|
2114 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
2115 | {
|
---|
2116 |
|
---|
2117 | //
|
---|
2118 | // special code for circular convolution with smooth M
|
---|
2119 | //
|
---|
2120 | ftbase.ftbasegeneratecomplexfftplan(m, plan);
|
---|
2121 | buf = new double[2*m];
|
---|
2122 | for(i=0; i<=m-1; i++)
|
---|
2123 | {
|
---|
2124 | buf[2*i+0] = a[i].x;
|
---|
2125 | buf[2*i+1] = a[i].y;
|
---|
2126 | }
|
---|
2127 | buf2 = new double[2*m];
|
---|
2128 | for(i=0; i<=n-1; i++)
|
---|
2129 | {
|
---|
2130 | buf2[2*i+0] = b[i].x;
|
---|
2131 | buf2[2*i+1] = b[i].y;
|
---|
2132 | }
|
---|
2133 | for(i=n; i<=m-1; i++)
|
---|
2134 | {
|
---|
2135 | buf2[2*i+0] = 0;
|
---|
2136 | buf2[2*i+1] = 0;
|
---|
2137 | }
|
---|
2138 | ftbase.ftbaseexecuteplan(ref buf, 0, m, plan);
|
---|
2139 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, plan);
|
---|
2140 | for(i=0; i<=m-1; i++)
|
---|
2141 | {
|
---|
2142 | ax = buf[2*i+0];
|
---|
2143 | ay = buf[2*i+1];
|
---|
2144 | bx = buf2[2*i+0];
|
---|
2145 | by = buf2[2*i+1];
|
---|
2146 | tx = ax*bx-ay*by;
|
---|
2147 | ty = ax*by+ay*bx;
|
---|
2148 | buf[2*i+0] = tx;
|
---|
2149 | buf[2*i+1] = -ty;
|
---|
2150 | }
|
---|
2151 | ftbase.ftbaseexecuteplan(ref buf, 0, m, plan);
|
---|
2152 | t = (double)1/(double)m;
|
---|
2153 | r = new complex[m];
|
---|
2154 | for(i=0; i<=m-1; i++)
|
---|
2155 | {
|
---|
2156 | r[i].x = t*buf[2*i+0];
|
---|
2157 | r[i].y = -(t*buf[2*i+1]);
|
---|
2158 | }
|
---|
2159 | }
|
---|
2160 | else
|
---|
2161 | {
|
---|
2162 |
|
---|
2163 | //
|
---|
2164 | // M is non-smooth, general code (circular/non-circular):
|
---|
2165 | // * first part is the same for circular and non-circular
|
---|
2166 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
2167 | // * second part differs:
|
---|
2168 | // * for non-circular convolution we just copy array
|
---|
2169 | // * for circular convolution we add array tail to its head
|
---|
2170 | //
|
---|
2171 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
2172 | ftbase.ftbasegeneratecomplexfftplan(p, plan);
|
---|
2173 | buf = new double[2*p];
|
---|
2174 | for(i=0; i<=m-1; i++)
|
---|
2175 | {
|
---|
2176 | buf[2*i+0] = a[i].x;
|
---|
2177 | buf[2*i+1] = a[i].y;
|
---|
2178 | }
|
---|
2179 | for(i=m; i<=p-1; i++)
|
---|
2180 | {
|
---|
2181 | buf[2*i+0] = 0;
|
---|
2182 | buf[2*i+1] = 0;
|
---|
2183 | }
|
---|
2184 | buf2 = new double[2*p];
|
---|
2185 | for(i=0; i<=n-1; i++)
|
---|
2186 | {
|
---|
2187 | buf2[2*i+0] = b[i].x;
|
---|
2188 | buf2[2*i+1] = b[i].y;
|
---|
2189 | }
|
---|
2190 | for(i=n; i<=p-1; i++)
|
---|
2191 | {
|
---|
2192 | buf2[2*i+0] = 0;
|
---|
2193 | buf2[2*i+1] = 0;
|
---|
2194 | }
|
---|
2195 | ftbase.ftbaseexecuteplan(ref buf, 0, p, plan);
|
---|
2196 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, plan);
|
---|
2197 | for(i=0; i<=p-1; i++)
|
---|
2198 | {
|
---|
2199 | ax = buf[2*i+0];
|
---|
2200 | ay = buf[2*i+1];
|
---|
2201 | bx = buf2[2*i+0];
|
---|
2202 | by = buf2[2*i+1];
|
---|
2203 | tx = ax*bx-ay*by;
|
---|
2204 | ty = ax*by+ay*bx;
|
---|
2205 | buf[2*i+0] = tx;
|
---|
2206 | buf[2*i+1] = -ty;
|
---|
2207 | }
|
---|
2208 | ftbase.ftbaseexecuteplan(ref buf, 0, p, plan);
|
---|
2209 | t = (double)1/(double)p;
|
---|
2210 | if( circular )
|
---|
2211 | {
|
---|
2212 |
|
---|
2213 | //
|
---|
2214 | // circular, add tail to head
|
---|
2215 | //
|
---|
2216 | r = new complex[m];
|
---|
2217 | for(i=0; i<=m-1; i++)
|
---|
2218 | {
|
---|
2219 | r[i].x = t*buf[2*i+0];
|
---|
2220 | r[i].y = -(t*buf[2*i+1]);
|
---|
2221 | }
|
---|
2222 | for(i=m; i<=m+n-2; i++)
|
---|
2223 | {
|
---|
2224 | r[i-m].x = r[i-m].x+t*buf[2*i+0];
|
---|
2225 | r[i-m].y = r[i-m].y-t*buf[2*i+1];
|
---|
2226 | }
|
---|
2227 | }
|
---|
2228 | else
|
---|
2229 | {
|
---|
2230 |
|
---|
2231 | //
|
---|
2232 | // non-circular, just copy
|
---|
2233 | //
|
---|
2234 | r = new complex[m+n-1];
|
---|
2235 | for(i=0; i<=m+n-2; i++)
|
---|
2236 | {
|
---|
2237 | r[i].x = t*buf[2*i+0];
|
---|
2238 | r[i].y = -(t*buf[2*i+1]);
|
---|
2239 | }
|
---|
2240 | }
|
---|
2241 | }
|
---|
2242 | return;
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | //
|
---|
2246 | // overlap-add method for
|
---|
2247 | // circular and non-circular convolutions.
|
---|
2248 | //
|
---|
2249 | // First part of code (separate FFTs of input blocks) is the same
|
---|
2250 | // for all types of convolution. Second part (overlapping outputs)
|
---|
2251 | // differs for different types of convolution. We just copy output
|
---|
2252 | // when convolution is non-circular. We wrap it around, if it is
|
---|
2253 | // circular.
|
---|
2254 | //
|
---|
2255 | if( alg==2 )
|
---|
2256 | {
|
---|
2257 | buf = new double[2*(q+n-1)];
|
---|
2258 |
|
---|
2259 | //
|
---|
2260 | // prepare R
|
---|
2261 | //
|
---|
2262 | if( circular )
|
---|
2263 | {
|
---|
2264 | r = new complex[m];
|
---|
2265 | for(i=0; i<=m-1; i++)
|
---|
2266 | {
|
---|
2267 | r[i] = 0;
|
---|
2268 | }
|
---|
2269 | }
|
---|
2270 | else
|
---|
2271 | {
|
---|
2272 | r = new complex[m+n-1];
|
---|
2273 | for(i=0; i<=m+n-2; i++)
|
---|
2274 | {
|
---|
2275 | r[i] = 0;
|
---|
2276 | }
|
---|
2277 | }
|
---|
2278 |
|
---|
2279 | //
|
---|
2280 | // pre-calculated FFT(B)
|
---|
2281 | //
|
---|
2282 | bbuf = new complex[q+n-1];
|
---|
2283 | for(i_=0; i_<=n-1;i_++)
|
---|
2284 | {
|
---|
2285 | bbuf[i_] = b[i_];
|
---|
2286 | }
|
---|
2287 | for(j=n; j<=q+n-2; j++)
|
---|
2288 | {
|
---|
2289 | bbuf[j] = 0;
|
---|
2290 | }
|
---|
2291 | fft.fftc1d(ref bbuf, q+n-1);
|
---|
2292 |
|
---|
2293 | //
|
---|
2294 | // prepare FFT plan for chunks of A
|
---|
2295 | //
|
---|
2296 | ftbase.ftbasegeneratecomplexfftplan(q+n-1, plan);
|
---|
2297 |
|
---|
2298 | //
|
---|
2299 | // main overlap-add cycle
|
---|
2300 | //
|
---|
2301 | i = 0;
|
---|
2302 | while( i<=m-1 )
|
---|
2303 | {
|
---|
2304 | p = Math.Min(q, m-i);
|
---|
2305 | for(j=0; j<=p-1; j++)
|
---|
2306 | {
|
---|
2307 | buf[2*j+0] = a[i+j].x;
|
---|
2308 | buf[2*j+1] = a[i+j].y;
|
---|
2309 | }
|
---|
2310 | for(j=p; j<=q+n-2; j++)
|
---|
2311 | {
|
---|
2312 | buf[2*j+0] = 0;
|
---|
2313 | buf[2*j+1] = 0;
|
---|
2314 | }
|
---|
2315 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, plan);
|
---|
2316 | for(j=0; j<=q+n-2; j++)
|
---|
2317 | {
|
---|
2318 | ax = buf[2*j+0];
|
---|
2319 | ay = buf[2*j+1];
|
---|
2320 | bx = bbuf[j].x;
|
---|
2321 | by = bbuf[j].y;
|
---|
2322 | tx = ax*bx-ay*by;
|
---|
2323 | ty = ax*by+ay*bx;
|
---|
2324 | buf[2*j+0] = tx;
|
---|
2325 | buf[2*j+1] = -ty;
|
---|
2326 | }
|
---|
2327 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, plan);
|
---|
2328 | t = (double)1/(double)(q+n-1);
|
---|
2329 | if( circular )
|
---|
2330 | {
|
---|
2331 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
2332 | j2 = j1+1;
|
---|
2333 | }
|
---|
2334 | else
|
---|
2335 | {
|
---|
2336 | j1 = p+n-2;
|
---|
2337 | j2 = j1+1;
|
---|
2338 | }
|
---|
2339 | for(j=0; j<=j1; j++)
|
---|
2340 | {
|
---|
2341 | r[i+j].x = r[i+j].x+buf[2*j+0]*t;
|
---|
2342 | r[i+j].y = r[i+j].y-buf[2*j+1]*t;
|
---|
2343 | }
|
---|
2344 | for(j=j2; j<=p+n-2; j++)
|
---|
2345 | {
|
---|
2346 | r[j-j2].x = r[j-j2].x+buf[2*j+0]*t;
|
---|
2347 | r[j-j2].y = r[j-j2].y-buf[2*j+1]*t;
|
---|
2348 | }
|
---|
2349 | i = i+p;
|
---|
2350 | }
|
---|
2351 | return;
|
---|
2352 | }
|
---|
2353 | }
|
---|
2354 |
|
---|
2355 |
|
---|
2356 | /*************************************************************************
|
---|
2357 | 1-dimensional real convolution.
|
---|
2358 |
|
---|
2359 | Extended subroutine which allows to choose convolution algorithm.
|
---|
2360 | Intended for internal use, ALGLIB users should call ConvR1D().
|
---|
2361 |
|
---|
2362 | INPUT PARAMETERS
|
---|
2363 | A - array[0..M-1] - complex function to be transformed
|
---|
2364 | M - problem size
|
---|
2365 | B - array[0..N-1] - complex function to be transformed
|
---|
2366 | N - problem size, N<=M
|
---|
2367 | Alg - algorithm type:
|
---|
2368 | *-2 auto-select Q for overlap-add
|
---|
2369 | *-1 auto-select algorithm and parameters
|
---|
2370 | * 0 straightforward formula for small N's
|
---|
2371 | * 1 general FFT-based code
|
---|
2372 | * 2 overlap-add with length Q
|
---|
2373 | Q - length for overlap-add
|
---|
2374 |
|
---|
2375 | OUTPUT PARAMETERS
|
---|
2376 | R - convolution: A*B. array[0..N+M-1].
|
---|
2377 |
|
---|
2378 | -- ALGLIB --
|
---|
2379 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
2380 | *************************************************************************/
|
---|
2381 | public static void convr1dx(double[] a,
|
---|
2382 | int m,
|
---|
2383 | double[] b,
|
---|
2384 | int n,
|
---|
2385 | bool circular,
|
---|
2386 | int alg,
|
---|
2387 | int q,
|
---|
2388 | ref double[] r)
|
---|
2389 | {
|
---|
2390 | double v = 0;
|
---|
2391 | int i = 0;
|
---|
2392 | int j = 0;
|
---|
2393 | int p = 0;
|
---|
2394 | int ptotal = 0;
|
---|
2395 | int i1 = 0;
|
---|
2396 | int i2 = 0;
|
---|
2397 | int j1 = 0;
|
---|
2398 | int j2 = 0;
|
---|
2399 | double ax = 0;
|
---|
2400 | double ay = 0;
|
---|
2401 | double bx = 0;
|
---|
2402 | double by = 0;
|
---|
2403 | double tx = 0;
|
---|
2404 | double ty = 0;
|
---|
2405 | double flopcand = 0;
|
---|
2406 | double flopbest = 0;
|
---|
2407 | int algbest = 0;
|
---|
2408 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
2409 | double[] buf = new double[0];
|
---|
2410 | double[] buf2 = new double[0];
|
---|
2411 | double[] buf3 = new double[0];
|
---|
2412 | int i_ = 0;
|
---|
2413 | int i1_ = 0;
|
---|
2414 |
|
---|
2415 | r = new double[0];
|
---|
2416 |
|
---|
2417 | ap.assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
2418 | ap.assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
2419 |
|
---|
2420 | //
|
---|
2421 | // handle special cases
|
---|
2422 | //
|
---|
2423 | if( Math.Min(m, n)<=2 )
|
---|
2424 | {
|
---|
2425 | alg = 0;
|
---|
2426 | }
|
---|
2427 |
|
---|
2428 | //
|
---|
2429 | // Auto-select
|
---|
2430 | //
|
---|
2431 | if( alg<0 )
|
---|
2432 | {
|
---|
2433 |
|
---|
2434 | //
|
---|
2435 | // Initial candidate: straightforward implementation.
|
---|
2436 | //
|
---|
2437 | // If we want to use auto-fitted overlap-add,
|
---|
2438 | // flop count is initialized by large real number - to force
|
---|
2439 | // another algorithm selection
|
---|
2440 | //
|
---|
2441 | algbest = 0;
|
---|
2442 | if( alg==-1 )
|
---|
2443 | {
|
---|
2444 | flopbest = 0.15*m*n;
|
---|
2445 | }
|
---|
2446 | else
|
---|
2447 | {
|
---|
2448 | flopbest = math.maxrealnumber;
|
---|
2449 | }
|
---|
2450 |
|
---|
2451 | //
|
---|
2452 | // Another candidate - generic FFT code
|
---|
2453 | //
|
---|
2454 | if( alg==-1 )
|
---|
2455 | {
|
---|
2456 | if( (circular & ftbase.ftbaseissmooth(m)) & m%2==0 )
|
---|
2457 | {
|
---|
2458 |
|
---|
2459 | //
|
---|
2460 | // special code for circular convolution of a sequence with a smooth length
|
---|
2461 | //
|
---|
2462 | flopcand = 3*ftbase.ftbasegetflopestimate(m/2)+(double)(6*m)/(double)2;
|
---|
2463 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
2464 | {
|
---|
2465 | algbest = 1;
|
---|
2466 | flopbest = flopcand;
|
---|
2467 | }
|
---|
2468 | }
|
---|
2469 | else
|
---|
2470 | {
|
---|
2471 |
|
---|
2472 | //
|
---|
2473 | // general cyclic/non-cyclic convolution
|
---|
2474 | //
|
---|
2475 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
2476 | flopcand = 3*ftbase.ftbasegetflopestimate(p/2)+(double)(6*p)/(double)2;
|
---|
2477 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
2478 | {
|
---|
2479 | algbest = 1;
|
---|
2480 | flopbest = flopcand;
|
---|
2481 | }
|
---|
2482 | }
|
---|
2483 | }
|
---|
2484 |
|
---|
2485 | //
|
---|
2486 | // Another candidate - overlap-add
|
---|
2487 | //
|
---|
2488 | q = 1;
|
---|
2489 | ptotal = 1;
|
---|
2490 | while( ptotal<n )
|
---|
2491 | {
|
---|
2492 | ptotal = ptotal*2;
|
---|
2493 | }
|
---|
2494 | while( ptotal<=m+n-1 )
|
---|
2495 | {
|
---|
2496 | p = ptotal-n+1;
|
---|
2497 | flopcand = (int)Math.Ceiling((double)m/(double)p)*(2*ftbase.ftbasegetflopestimate(ptotal/2)+1*(ptotal/2));
|
---|
2498 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
2499 | {
|
---|
2500 | flopbest = flopcand;
|
---|
2501 | algbest = 2;
|
---|
2502 | q = p;
|
---|
2503 | }
|
---|
2504 | ptotal = ptotal*2;
|
---|
2505 | }
|
---|
2506 | alg = algbest;
|
---|
2507 | convr1dx(a, m, b, n, circular, alg, q, ref r);
|
---|
2508 | return;
|
---|
2509 | }
|
---|
2510 |
|
---|
2511 | //
|
---|
2512 | // straightforward formula for
|
---|
2513 | // circular and non-circular convolutions.
|
---|
2514 | //
|
---|
2515 | // Very simple code, no further comments needed.
|
---|
2516 | //
|
---|
2517 | if( alg==0 )
|
---|
2518 | {
|
---|
2519 |
|
---|
2520 | //
|
---|
2521 | // Special case: N=1
|
---|
2522 | //
|
---|
2523 | if( n==1 )
|
---|
2524 | {
|
---|
2525 | r = new double[m];
|
---|
2526 | v = b[0];
|
---|
2527 | for(i_=0; i_<=m-1;i_++)
|
---|
2528 | {
|
---|
2529 | r[i_] = v*a[i_];
|
---|
2530 | }
|
---|
2531 | return;
|
---|
2532 | }
|
---|
2533 |
|
---|
2534 | //
|
---|
2535 | // use straightforward formula
|
---|
2536 | //
|
---|
2537 | if( circular )
|
---|
2538 | {
|
---|
2539 |
|
---|
2540 | //
|
---|
2541 | // circular convolution
|
---|
2542 | //
|
---|
2543 | r = new double[m];
|
---|
2544 | v = b[0];
|
---|
2545 | for(i_=0; i_<=m-1;i_++)
|
---|
2546 | {
|
---|
2547 | r[i_] = v*a[i_];
|
---|
2548 | }
|
---|
2549 | for(i=1; i<=n-1; i++)
|
---|
2550 | {
|
---|
2551 | v = b[i];
|
---|
2552 | i1 = 0;
|
---|
2553 | i2 = i-1;
|
---|
2554 | j1 = m-i;
|
---|
2555 | j2 = m-1;
|
---|
2556 | i1_ = (j1) - (i1);
|
---|
2557 | for(i_=i1; i_<=i2;i_++)
|
---|
2558 | {
|
---|
2559 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
2560 | }
|
---|
2561 | i1 = i;
|
---|
2562 | i2 = m-1;
|
---|
2563 | j1 = 0;
|
---|
2564 | j2 = m-i-1;
|
---|
2565 | i1_ = (j1) - (i1);
|
---|
2566 | for(i_=i1; i_<=i2;i_++)
|
---|
2567 | {
|
---|
2568 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
2569 | }
|
---|
2570 | }
|
---|
2571 | }
|
---|
2572 | else
|
---|
2573 | {
|
---|
2574 |
|
---|
2575 | //
|
---|
2576 | // non-circular convolution
|
---|
2577 | //
|
---|
2578 | r = new double[m+n-1];
|
---|
2579 | for(i=0; i<=m+n-2; i++)
|
---|
2580 | {
|
---|
2581 | r[i] = 0;
|
---|
2582 | }
|
---|
2583 | for(i=0; i<=n-1; i++)
|
---|
2584 | {
|
---|
2585 | v = b[i];
|
---|
2586 | i1_ = (0) - (i);
|
---|
2587 | for(i_=i; i_<=i+m-1;i_++)
|
---|
2588 | {
|
---|
2589 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
2590 | }
|
---|
2591 | }
|
---|
2592 | }
|
---|
2593 | return;
|
---|
2594 | }
|
---|
2595 |
|
---|
2596 | //
|
---|
2597 | // general FFT-based code for
|
---|
2598 | // circular and non-circular convolutions.
|
---|
2599 | //
|
---|
2600 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
2601 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
2602 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
2603 | //
|
---|
2604 | // If convolution is non-circular, we use zero-padding + FFT.
|
---|
2605 | //
|
---|
2606 | // We assume that M+N-1>2 - we should call small case code otherwise
|
---|
2607 | //
|
---|
2608 | if( alg==1 )
|
---|
2609 | {
|
---|
2610 | ap.assert(m+n-1>2, "ConvR1DX: internal error!");
|
---|
2611 | if( (circular & ftbase.ftbaseissmooth(m)) & m%2==0 )
|
---|
2612 | {
|
---|
2613 |
|
---|
2614 | //
|
---|
2615 | // special code for circular convolution with smooth even M
|
---|
2616 | //
|
---|
2617 | buf = new double[m];
|
---|
2618 | for(i_=0; i_<=m-1;i_++)
|
---|
2619 | {
|
---|
2620 | buf[i_] = a[i_];
|
---|
2621 | }
|
---|
2622 | buf2 = new double[m];
|
---|
2623 | for(i_=0; i_<=n-1;i_++)
|
---|
2624 | {
|
---|
2625 | buf2[i_] = b[i_];
|
---|
2626 | }
|
---|
2627 | for(i=n; i<=m-1; i++)
|
---|
2628 | {
|
---|
2629 | buf2[i] = 0;
|
---|
2630 | }
|
---|
2631 | buf3 = new double[m];
|
---|
2632 | ftbase.ftbasegeneratecomplexfftplan(m/2, plan);
|
---|
2633 | fft.fftr1dinternaleven(ref buf, m, ref buf3, plan);
|
---|
2634 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, plan);
|
---|
2635 | buf[0] = buf[0]*buf2[0];
|
---|
2636 | buf[1] = buf[1]*buf2[1];
|
---|
2637 | for(i=1; i<=m/2-1; i++)
|
---|
2638 | {
|
---|
2639 | ax = buf[2*i+0];
|
---|
2640 | ay = buf[2*i+1];
|
---|
2641 | bx = buf2[2*i+0];
|
---|
2642 | by = buf2[2*i+1];
|
---|
2643 | tx = ax*bx-ay*by;
|
---|
2644 | ty = ax*by+ay*bx;
|
---|
2645 | buf[2*i+0] = tx;
|
---|
2646 | buf[2*i+1] = ty;
|
---|
2647 | }
|
---|
2648 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, plan);
|
---|
2649 | r = new double[m];
|
---|
2650 | for(i_=0; i_<=m-1;i_++)
|
---|
2651 | {
|
---|
2652 | r[i_] = buf[i_];
|
---|
2653 | }
|
---|
2654 | }
|
---|
2655 | else
|
---|
2656 | {
|
---|
2657 |
|
---|
2658 | //
|
---|
2659 | // M is non-smooth or non-even, general code (circular/non-circular):
|
---|
2660 | // * first part is the same for circular and non-circular
|
---|
2661 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
2662 | // * second part differs:
|
---|
2663 | // * for non-circular convolution we just copy array
|
---|
2664 | // * for circular convolution we add array tail to its head
|
---|
2665 | //
|
---|
2666 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
2667 | buf = new double[p];
|
---|
2668 | for(i_=0; i_<=m-1;i_++)
|
---|
2669 | {
|
---|
2670 | buf[i_] = a[i_];
|
---|
2671 | }
|
---|
2672 | for(i=m; i<=p-1; i++)
|
---|
2673 | {
|
---|
2674 | buf[i] = 0;
|
---|
2675 | }
|
---|
2676 | buf2 = new double[p];
|
---|
2677 | for(i_=0; i_<=n-1;i_++)
|
---|
2678 | {
|
---|
2679 | buf2[i_] = b[i_];
|
---|
2680 | }
|
---|
2681 | for(i=n; i<=p-1; i++)
|
---|
2682 | {
|
---|
2683 | buf2[i] = 0;
|
---|
2684 | }
|
---|
2685 | buf3 = new double[p];
|
---|
2686 | ftbase.ftbasegeneratecomplexfftplan(p/2, plan);
|
---|
2687 | fft.fftr1dinternaleven(ref buf, p, ref buf3, plan);
|
---|
2688 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, plan);
|
---|
2689 | buf[0] = buf[0]*buf2[0];
|
---|
2690 | buf[1] = buf[1]*buf2[1];
|
---|
2691 | for(i=1; i<=p/2-1; i++)
|
---|
2692 | {
|
---|
2693 | ax = buf[2*i+0];
|
---|
2694 | ay = buf[2*i+1];
|
---|
2695 | bx = buf2[2*i+0];
|
---|
2696 | by = buf2[2*i+1];
|
---|
2697 | tx = ax*bx-ay*by;
|
---|
2698 | ty = ax*by+ay*bx;
|
---|
2699 | buf[2*i+0] = tx;
|
---|
2700 | buf[2*i+1] = ty;
|
---|
2701 | }
|
---|
2702 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, plan);
|
---|
2703 | if( circular )
|
---|
2704 | {
|
---|
2705 |
|
---|
2706 | //
|
---|
2707 | // circular, add tail to head
|
---|
2708 | //
|
---|
2709 | r = new double[m];
|
---|
2710 | for(i_=0; i_<=m-1;i_++)
|
---|
2711 | {
|
---|
2712 | r[i_] = buf[i_];
|
---|
2713 | }
|
---|
2714 | if( n>=2 )
|
---|
2715 | {
|
---|
2716 | i1_ = (m) - (0);
|
---|
2717 | for(i_=0; i_<=n-2;i_++)
|
---|
2718 | {
|
---|
2719 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
2720 | }
|
---|
2721 | }
|
---|
2722 | }
|
---|
2723 | else
|
---|
2724 | {
|
---|
2725 |
|
---|
2726 | //
|
---|
2727 | // non-circular, just copy
|
---|
2728 | //
|
---|
2729 | r = new double[m+n-1];
|
---|
2730 | for(i_=0; i_<=m+n-2;i_++)
|
---|
2731 | {
|
---|
2732 | r[i_] = buf[i_];
|
---|
2733 | }
|
---|
2734 | }
|
---|
2735 | }
|
---|
2736 | return;
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | //
|
---|
2740 | // overlap-add method
|
---|
2741 | //
|
---|
2742 | if( alg==2 )
|
---|
2743 | {
|
---|
2744 | ap.assert((q+n-1)%2==0, "ConvR1DX: internal error!");
|
---|
2745 | buf = new double[q+n-1];
|
---|
2746 | buf2 = new double[q+n-1];
|
---|
2747 | buf3 = new double[q+n-1];
|
---|
2748 | ftbase.ftbasegeneratecomplexfftplan((q+n-1)/2, plan);
|
---|
2749 |
|
---|
2750 | //
|
---|
2751 | // prepare R
|
---|
2752 | //
|
---|
2753 | if( circular )
|
---|
2754 | {
|
---|
2755 | r = new double[m];
|
---|
2756 | for(i=0; i<=m-1; i++)
|
---|
2757 | {
|
---|
2758 | r[i] = 0;
|
---|
2759 | }
|
---|
2760 | }
|
---|
2761 | else
|
---|
2762 | {
|
---|
2763 | r = new double[m+n-1];
|
---|
2764 | for(i=0; i<=m+n-2; i++)
|
---|
2765 | {
|
---|
2766 | r[i] = 0;
|
---|
2767 | }
|
---|
2768 | }
|
---|
2769 |
|
---|
2770 | //
|
---|
2771 | // pre-calculated FFT(B)
|
---|
2772 | //
|
---|
2773 | for(i_=0; i_<=n-1;i_++)
|
---|
2774 | {
|
---|
2775 | buf2[i_] = b[i_];
|
---|
2776 | }
|
---|
2777 | for(j=n; j<=q+n-2; j++)
|
---|
2778 | {
|
---|
2779 | buf2[j] = 0;
|
---|
2780 | }
|
---|
2781 | fft.fftr1dinternaleven(ref buf2, q+n-1, ref buf3, plan);
|
---|
2782 |
|
---|
2783 | //
|
---|
2784 | // main overlap-add cycle
|
---|
2785 | //
|
---|
2786 | i = 0;
|
---|
2787 | while( i<=m-1 )
|
---|
2788 | {
|
---|
2789 | p = Math.Min(q, m-i);
|
---|
2790 | i1_ = (i) - (0);
|
---|
2791 | for(i_=0; i_<=p-1;i_++)
|
---|
2792 | {
|
---|
2793 | buf[i_] = a[i_+i1_];
|
---|
2794 | }
|
---|
2795 | for(j=p; j<=q+n-2; j++)
|
---|
2796 | {
|
---|
2797 | buf[j] = 0;
|
---|
2798 | }
|
---|
2799 | fft.fftr1dinternaleven(ref buf, q+n-1, ref buf3, plan);
|
---|
2800 | buf[0] = buf[0]*buf2[0];
|
---|
2801 | buf[1] = buf[1]*buf2[1];
|
---|
2802 | for(j=1; j<=(q+n-1)/2-1; j++)
|
---|
2803 | {
|
---|
2804 | ax = buf[2*j+0];
|
---|
2805 | ay = buf[2*j+1];
|
---|
2806 | bx = buf2[2*j+0];
|
---|
2807 | by = buf2[2*j+1];
|
---|
2808 | tx = ax*bx-ay*by;
|
---|
2809 | ty = ax*by+ay*bx;
|
---|
2810 | buf[2*j+0] = tx;
|
---|
2811 | buf[2*j+1] = ty;
|
---|
2812 | }
|
---|
2813 | fft.fftr1dinvinternaleven(ref buf, q+n-1, ref buf3, plan);
|
---|
2814 | if( circular )
|
---|
2815 | {
|
---|
2816 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
2817 | j2 = j1+1;
|
---|
2818 | }
|
---|
2819 | else
|
---|
2820 | {
|
---|
2821 | j1 = p+n-2;
|
---|
2822 | j2 = j1+1;
|
---|
2823 | }
|
---|
2824 | i1_ = (0) - (i);
|
---|
2825 | for(i_=i; i_<=i+j1;i_++)
|
---|
2826 | {
|
---|
2827 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
2828 | }
|
---|
2829 | if( p+n-2>=j2 )
|
---|
2830 | {
|
---|
2831 | i1_ = (j2) - (0);
|
---|
2832 | for(i_=0; i_<=p+n-2-j2;i_++)
|
---|
2833 | {
|
---|
2834 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
2835 | }
|
---|
2836 | }
|
---|
2837 | i = i+p;
|
---|
2838 | }
|
---|
2839 | return;
|
---|
2840 | }
|
---|
2841 | }
|
---|
2842 |
|
---|
2843 |
|
---|
2844 | }
|
---|
2845 | public class corr
|
---|
2846 | {
|
---|
2847 | /*************************************************************************
|
---|
2848 | 1-dimensional complex cross-correlation.
|
---|
2849 |
|
---|
2850 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
2851 |
|
---|
2852 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
2853 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
2854 | about performance).
|
---|
2855 |
|
---|
2856 | IMPORTANT:
|
---|
2857 | for historical reasons subroutine accepts its parameters in reversed
|
---|
2858 | order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
2859 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
2860 |
|
---|
2861 | INPUT PARAMETERS
|
---|
2862 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
2863 | signal containing pattern
|
---|
2864 | N - problem size
|
---|
2865 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
2866 | pattern to search withing signal
|
---|
2867 | M - problem size
|
---|
2868 |
|
---|
2869 | OUTPUT PARAMETERS
|
---|
2870 | R - cross-correlation, array[0..N+M-2]:
|
---|
2871 | * positive lags are stored in R[0..N-1],
|
---|
2872 | R[i] = sum(conj(pattern[j])*signal[i+j]
|
---|
2873 | * negative lags are stored in R[N..N+M-2],
|
---|
2874 | R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
|
---|
2875 |
|
---|
2876 | NOTE:
|
---|
2877 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
2878 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
2879 |
|
---|
2880 | -- ALGLIB --
|
---|
2881 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
2882 | *************************************************************************/
|
---|
2883 | public static void corrc1d(complex[] signal,
|
---|
2884 | int n,
|
---|
2885 | complex[] pattern,
|
---|
2886 | int m,
|
---|
2887 | ref complex[] r)
|
---|
2888 | {
|
---|
2889 | complex[] p = new complex[0];
|
---|
2890 | complex[] b = new complex[0];
|
---|
2891 | int i = 0;
|
---|
2892 | int i_ = 0;
|
---|
2893 | int i1_ = 0;
|
---|
2894 |
|
---|
2895 | r = new complex[0];
|
---|
2896 |
|
---|
2897 | ap.assert(n>0 & m>0, "CorrC1D: incorrect N or M!");
|
---|
2898 | p = new complex[m];
|
---|
2899 | for(i=0; i<=m-1; i++)
|
---|
2900 | {
|
---|
2901 | p[m-1-i] = math.conj(pattern[i]);
|
---|
2902 | }
|
---|
2903 | conv.convc1d(p, m, signal, n, ref b);
|
---|
2904 | r = new complex[m+n-1];
|
---|
2905 | i1_ = (m-1) - (0);
|
---|
2906 | for(i_=0; i_<=n-1;i_++)
|
---|
2907 | {
|
---|
2908 | r[i_] = b[i_+i1_];
|
---|
2909 | }
|
---|
2910 | if( m+n-2>=n )
|
---|
2911 | {
|
---|
2912 | i1_ = (0) - (n);
|
---|
2913 | for(i_=n; i_<=m+n-2;i_++)
|
---|
2914 | {
|
---|
2915 | r[i_] = b[i_+i1_];
|
---|
2916 | }
|
---|
2917 | }
|
---|
2918 | }
|
---|
2919 |
|
---|
2920 |
|
---|
2921 | /*************************************************************************
|
---|
2922 | 1-dimensional circular complex cross-correlation.
|
---|
2923 |
|
---|
2924 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
2925 | Algorithm has linearithmic complexity for any M/N.
|
---|
2926 |
|
---|
2927 | IMPORTANT:
|
---|
2928 | for historical reasons subroutine accepts its parameters in reversed
|
---|
2929 | order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
2930 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
2931 | as "x").
|
---|
2932 |
|
---|
2933 | INPUT PARAMETERS
|
---|
2934 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
2935 | periodic signal containing pattern
|
---|
2936 | N - problem size
|
---|
2937 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
2938 | non-periodic pattern to search withing signal
|
---|
2939 | M - problem size
|
---|
2940 |
|
---|
2941 | OUTPUT PARAMETERS
|
---|
2942 | R - convolution: A*B. array[0..M-1].
|
---|
2943 |
|
---|
2944 |
|
---|
2945 | -- ALGLIB --
|
---|
2946 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
2947 | *************************************************************************/
|
---|
2948 | public static void corrc1dcircular(complex[] signal,
|
---|
2949 | int m,
|
---|
2950 | complex[] pattern,
|
---|
2951 | int n,
|
---|
2952 | ref complex[] c)
|
---|
2953 | {
|
---|
2954 | complex[] p = new complex[0];
|
---|
2955 | complex[] b = new complex[0];
|
---|
2956 | int i1 = 0;
|
---|
2957 | int i2 = 0;
|
---|
2958 | int i = 0;
|
---|
2959 | int j2 = 0;
|
---|
2960 | int i_ = 0;
|
---|
2961 | int i1_ = 0;
|
---|
2962 |
|
---|
2963 | c = new complex[0];
|
---|
2964 |
|
---|
2965 | ap.assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
2966 |
|
---|
2967 | //
|
---|
2968 | // normalize task: make M>=N,
|
---|
2969 | // so A will be longer (at least - not shorter) that B.
|
---|
2970 | //
|
---|
2971 | if( m<n )
|
---|
2972 | {
|
---|
2973 | b = new complex[m];
|
---|
2974 | for(i1=0; i1<=m-1; i1++)
|
---|
2975 | {
|
---|
2976 | b[i1] = 0;
|
---|
2977 | }
|
---|
2978 | i1 = 0;
|
---|
2979 | while( i1<n )
|
---|
2980 | {
|
---|
2981 | i2 = Math.Min(i1+m-1, n-1);
|
---|
2982 | j2 = i2-i1;
|
---|
2983 | i1_ = (i1) - (0);
|
---|
2984 | for(i_=0; i_<=j2;i_++)
|
---|
2985 | {
|
---|
2986 | b[i_] = b[i_] + pattern[i_+i1_];
|
---|
2987 | }
|
---|
2988 | i1 = i1+m;
|
---|
2989 | }
|
---|
2990 | corrc1dcircular(signal, m, b, m, ref c);
|
---|
2991 | return;
|
---|
2992 | }
|
---|
2993 |
|
---|
2994 | //
|
---|
2995 | // Task is normalized
|
---|
2996 | //
|
---|
2997 | p = new complex[n];
|
---|
2998 | for(i=0; i<=n-1; i++)
|
---|
2999 | {
|
---|
3000 | p[n-1-i] = math.conj(pattern[i]);
|
---|
3001 | }
|
---|
3002 | conv.convc1dcircular(signal, m, p, n, ref b);
|
---|
3003 | c = new complex[m];
|
---|
3004 | i1_ = (n-1) - (0);
|
---|
3005 | for(i_=0; i_<=m-n;i_++)
|
---|
3006 | {
|
---|
3007 | c[i_] = b[i_+i1_];
|
---|
3008 | }
|
---|
3009 | if( m-n+1<=m-1 )
|
---|
3010 | {
|
---|
3011 | i1_ = (0) - (m-n+1);
|
---|
3012 | for(i_=m-n+1; i_<=m-1;i_++)
|
---|
3013 | {
|
---|
3014 | c[i_] = b[i_+i1_];
|
---|
3015 | }
|
---|
3016 | }
|
---|
3017 | }
|
---|
3018 |
|
---|
3019 |
|
---|
3020 | /*************************************************************************
|
---|
3021 | 1-dimensional real cross-correlation.
|
---|
3022 |
|
---|
3023 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
3024 |
|
---|
3025 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
3026 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
3027 | about performance).
|
---|
3028 |
|
---|
3029 | IMPORTANT:
|
---|
3030 | for historical reasons subroutine accepts its parameters in reversed
|
---|
3031 | order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
3032 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
3033 |
|
---|
3034 | INPUT PARAMETERS
|
---|
3035 | Signal - array[0..N-1] - real function to be transformed,
|
---|
3036 | signal containing pattern
|
---|
3037 | N - problem size
|
---|
3038 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
3039 | pattern to search withing signal
|
---|
3040 | M - problem size
|
---|
3041 |
|
---|
3042 | OUTPUT PARAMETERS
|
---|
3043 | R - cross-correlation, array[0..N+M-2]:
|
---|
3044 | * positive lags are stored in R[0..N-1],
|
---|
3045 | R[i] = sum(pattern[j]*signal[i+j]
|
---|
3046 | * negative lags are stored in R[N..N+M-2],
|
---|
3047 | R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
|
---|
3048 |
|
---|
3049 | NOTE:
|
---|
3050 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
3051 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
3052 |
|
---|
3053 | -- ALGLIB --
|
---|
3054 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
3055 | *************************************************************************/
|
---|
3056 | public static void corrr1d(double[] signal,
|
---|
3057 | int n,
|
---|
3058 | double[] pattern,
|
---|
3059 | int m,
|
---|
3060 | ref double[] r)
|
---|
3061 | {
|
---|
3062 | double[] p = new double[0];
|
---|
3063 | double[] b = new double[0];
|
---|
3064 | int i = 0;
|
---|
3065 | int i_ = 0;
|
---|
3066 | int i1_ = 0;
|
---|
3067 |
|
---|
3068 | r = new double[0];
|
---|
3069 |
|
---|
3070 | ap.assert(n>0 & m>0, "CorrR1D: incorrect N or M!");
|
---|
3071 | p = new double[m];
|
---|
3072 | for(i=0; i<=m-1; i++)
|
---|
3073 | {
|
---|
3074 | p[m-1-i] = pattern[i];
|
---|
3075 | }
|
---|
3076 | conv.convr1d(p, m, signal, n, ref b);
|
---|
3077 | r = new double[m+n-1];
|
---|
3078 | i1_ = (m-1) - (0);
|
---|
3079 | for(i_=0; i_<=n-1;i_++)
|
---|
3080 | {
|
---|
3081 | r[i_] = b[i_+i1_];
|
---|
3082 | }
|
---|
3083 | if( m+n-2>=n )
|
---|
3084 | {
|
---|
3085 | i1_ = (0) - (n);
|
---|
3086 | for(i_=n; i_<=m+n-2;i_++)
|
---|
3087 | {
|
---|
3088 | r[i_] = b[i_+i1_];
|
---|
3089 | }
|
---|
3090 | }
|
---|
3091 | }
|
---|
3092 |
|
---|
3093 |
|
---|
3094 | /*************************************************************************
|
---|
3095 | 1-dimensional circular real cross-correlation.
|
---|
3096 |
|
---|
3097 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
3098 | Algorithm has linearithmic complexity for any M/N.
|
---|
3099 |
|
---|
3100 | IMPORTANT:
|
---|
3101 | for historical reasons subroutine accepts its parameters in reversed
|
---|
3102 | order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
3103 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
3104 | as "x").
|
---|
3105 |
|
---|
3106 | INPUT PARAMETERS
|
---|
3107 | Signal - array[0..N-1] - real function to be transformed,
|
---|
3108 | periodic signal containing pattern
|
---|
3109 | N - problem size
|
---|
3110 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
3111 | non-periodic pattern to search withing signal
|
---|
3112 | M - problem size
|
---|
3113 |
|
---|
3114 | OUTPUT PARAMETERS
|
---|
3115 | R - convolution: A*B. array[0..M-1].
|
---|
3116 |
|
---|
3117 |
|
---|
3118 | -- ALGLIB --
|
---|
3119 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
3120 | *************************************************************************/
|
---|
3121 | public static void corrr1dcircular(double[] signal,
|
---|
3122 | int m,
|
---|
3123 | double[] pattern,
|
---|
3124 | int n,
|
---|
3125 | ref double[] c)
|
---|
3126 | {
|
---|
3127 | double[] p = new double[0];
|
---|
3128 | double[] b = new double[0];
|
---|
3129 | int i1 = 0;
|
---|
3130 | int i2 = 0;
|
---|
3131 | int i = 0;
|
---|
3132 | int j2 = 0;
|
---|
3133 | int i_ = 0;
|
---|
3134 | int i1_ = 0;
|
---|
3135 |
|
---|
3136 | c = new double[0];
|
---|
3137 |
|
---|
3138 | ap.assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
3139 |
|
---|
3140 | //
|
---|
3141 | // normalize task: make M>=N,
|
---|
3142 | // so A will be longer (at least - not shorter) that B.
|
---|
3143 | //
|
---|
3144 | if( m<n )
|
---|
3145 | {
|
---|
3146 | b = new double[m];
|
---|
3147 | for(i1=0; i1<=m-1; i1++)
|
---|
3148 | {
|
---|
3149 | b[i1] = 0;
|
---|
3150 | }
|
---|
3151 | i1 = 0;
|
---|
3152 | while( i1<n )
|
---|
3153 | {
|
---|
3154 | i2 = Math.Min(i1+m-1, n-1);
|
---|
3155 | j2 = i2-i1;
|
---|
3156 | i1_ = (i1) - (0);
|
---|
3157 | for(i_=0; i_<=j2;i_++)
|
---|
3158 | {
|
---|
3159 | b[i_] = b[i_] + pattern[i_+i1_];
|
---|
3160 | }
|
---|
3161 | i1 = i1+m;
|
---|
3162 | }
|
---|
3163 | corrr1dcircular(signal, m, b, m, ref c);
|
---|
3164 | return;
|
---|
3165 | }
|
---|
3166 |
|
---|
3167 | //
|
---|
3168 | // Task is normalized
|
---|
3169 | //
|
---|
3170 | p = new double[n];
|
---|
3171 | for(i=0; i<=n-1; i++)
|
---|
3172 | {
|
---|
3173 | p[n-1-i] = pattern[i];
|
---|
3174 | }
|
---|
3175 | conv.convr1dcircular(signal, m, p, n, ref b);
|
---|
3176 | c = new double[m];
|
---|
3177 | i1_ = (n-1) - (0);
|
---|
3178 | for(i_=0; i_<=m-n;i_++)
|
---|
3179 | {
|
---|
3180 | c[i_] = b[i_+i1_];
|
---|
3181 | }
|
---|
3182 | if( m-n+1<=m-1 )
|
---|
3183 | {
|
---|
3184 | i1_ = (0) - (m-n+1);
|
---|
3185 | for(i_=m-n+1; i_<=m-1;i_++)
|
---|
3186 | {
|
---|
3187 | c[i_] = b[i_+i1_];
|
---|
3188 | }
|
---|
3189 | }
|
---|
3190 | }
|
---|
3191 |
|
---|
3192 |
|
---|
3193 | }
|
---|
3194 | public class fht
|
---|
3195 | {
|
---|
3196 | /*************************************************************************
|
---|
3197 | 1-dimensional Fast Hartley Transform.
|
---|
3198 |
|
---|
3199 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
3200 |
|
---|
3201 | INPUT PARAMETERS
|
---|
3202 | A - array[0..N-1] - real function to be transformed
|
---|
3203 | N - problem size
|
---|
3204 |
|
---|
3205 | OUTPUT PARAMETERS
|
---|
3206 | A - FHT of a input array, array[0..N-1],
|
---|
3207 | A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)
|
---|
3208 |
|
---|
3209 |
|
---|
3210 | -- ALGLIB --
|
---|
3211 | Copyright 04.06.2009 by Bochkanov Sergey
|
---|
3212 | *************************************************************************/
|
---|
3213 | public static void fhtr1d(ref double[] a,
|
---|
3214 | int n)
|
---|
3215 | {
|
---|
3216 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
3217 | int i = 0;
|
---|
3218 | complex[] fa = new complex[0];
|
---|
3219 |
|
---|
3220 | ap.assert(n>0, "FHTR1D: incorrect N!");
|
---|
3221 |
|
---|
3222 | //
|
---|
3223 | // Special case: N=1, FHT is just identity transform.
|
---|
3224 | // After this block we assume that N is strictly greater than 1.
|
---|
3225 | //
|
---|
3226 | if( n==1 )
|
---|
3227 | {
|
---|
3228 | return;
|
---|
3229 | }
|
---|
3230 |
|
---|
3231 | //
|
---|
3232 | // Reduce FHt to real FFT
|
---|
3233 | //
|
---|
3234 | fft.fftr1d(a, n, ref fa);
|
---|
3235 | for(i=0; i<=n-1; i++)
|
---|
3236 | {
|
---|
3237 | a[i] = fa[i].x-fa[i].y;
|
---|
3238 | }
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 |
|
---|
3242 | /*************************************************************************
|
---|
3243 | 1-dimensional inverse FHT.
|
---|
3244 |
|
---|
3245 | Algorithm has O(N*logN) complexity for any N (composite or prime).
|
---|
3246 |
|
---|
3247 | INPUT PARAMETERS
|
---|
3248 | A - array[0..N-1] - complex array to be transformed
|
---|
3249 | N - problem size
|
---|
3250 |
|
---|
3251 | OUTPUT PARAMETERS
|
---|
3252 | A - inverse FHT of a input array, array[0..N-1]
|
---|
3253 |
|
---|
3254 |
|
---|
3255 | -- ALGLIB --
|
---|
3256 | Copyright 29.05.2009 by Bochkanov Sergey
|
---|
3257 | *************************************************************************/
|
---|
3258 | public static void fhtr1dinv(ref double[] a,
|
---|
3259 | int n)
|
---|
3260 | {
|
---|
3261 | int i = 0;
|
---|
3262 |
|
---|
3263 | ap.assert(n>0, "FHTR1DInv: incorrect N!");
|
---|
3264 |
|
---|
3265 | //
|
---|
3266 | // Special case: N=1, iFHT is just identity transform.
|
---|
3267 | // After this block we assume that N is strictly greater than 1.
|
---|
3268 | //
|
---|
3269 | if( n==1 )
|
---|
3270 | {
|
---|
3271 | return;
|
---|
3272 | }
|
---|
3273 |
|
---|
3274 | //
|
---|
3275 | // Inverse FHT can be expressed in terms of the FHT as
|
---|
3276 | //
|
---|
3277 | // invfht(x) = fht(x)/N
|
---|
3278 | //
|
---|
3279 | fhtr1d(ref a, n);
|
---|
3280 | for(i=0; i<=n-1; i++)
|
---|
3281 | {
|
---|
3282 | a[i] = a[i]/n;
|
---|
3283 | }
|
---|
3284 | }
|
---|
3285 |
|
---|
3286 |
|
---|
3287 | }
|
---|
3288 | }
|
---|
3289 |
|
---|