[8409] | 1 | using System.Collections.Generic;
|
---|
| 2 | using System.Linq;
|
---|
| 3 | using HeuristicLab.Common;
|
---|
| 4 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 5 |
|
---|
| 6 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 7 | public class SymbolicDiscriminantFunctionClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
| 8 | public override Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree,
|
---|
| 9 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 10 | IDataAnalysisProblemData problemData) {
|
---|
| 11 | var replacementValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
|
---|
| 12 | foreach (ISymbolicExpressionTreeNode node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) {
|
---|
| 13 | replacementValues[node] = CalculateReplacementValue(node, tree, interpreter, problemData);
|
---|
| 14 | }
|
---|
| 15 | return replacementValues;
|
---|
| 16 | }
|
---|
| 17 | public override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree,
|
---|
| 18 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 19 | IDataAnalysisProblemData classificationProblemData,
|
---|
| 20 | double lowerEstimationLimit, double upperEstimationLimit) {
|
---|
| 21 | var problemData = (IClassificationProblemData)classificationProblemData;
|
---|
| 22 | var dataset = problemData.Dataset;
|
---|
| 23 | var rows = problemData.TrainingIndices;
|
---|
| 24 | string targetVariable = problemData.TargetVariable;
|
---|
| 25 | Dictionary<ISymbolicExpressionTreeNode, double> impactValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
|
---|
| 26 | List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
|
---|
| 27 |
|
---|
| 28 | var targetClassValues = dataset.GetDoubleValues(targetVariable, rows);
|
---|
| 29 | var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
|
---|
| 30 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit)
|
---|
| 31 | .ToArray();
|
---|
| 32 | OnlineCalculatorError errorState;
|
---|
| 33 | double originalGini = NormalizedGiniCalculator.Calculate(targetClassValues, originalOutput, out errorState);
|
---|
| 34 | if (errorState != OnlineCalculatorError.None) originalGini = 0.0;
|
---|
| 35 |
|
---|
| 36 | foreach (ISymbolicExpressionTreeNode node in nodes) {
|
---|
| 37 | var parent = node.Parent;
|
---|
| 38 | var constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
|
---|
| 39 | constantNode.Value = CalculateReplacementValue(node, tree, interpreter, classificationProblemData);
|
---|
| 40 | ISymbolicExpressionTreeNode replacementNode = constantNode;
|
---|
| 41 | SwitchNode(parent, node, replacementNode);
|
---|
| 42 | var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
|
---|
| 43 | .LimitToRange(lowerEstimationLimit, upperEstimationLimit)
|
---|
| 44 | .ToArray();
|
---|
| 45 | double newGini = NormalizedGiniCalculator.Calculate(targetClassValues, newOutput, out errorState);
|
---|
| 46 | if (errorState != OnlineCalculatorError.None) newGini = 0.0;
|
---|
| 47 |
|
---|
| 48 | // impact = 0 if no change
|
---|
| 49 | // impact < 0 if new solution is better
|
---|
| 50 | // impact > 0 if new solution is worse
|
---|
| 51 | impactValues[node] = originalGini - newGini;
|
---|
| 52 | SwitchNode(parent, replacementNode, node);
|
---|
| 53 | }
|
---|
| 54 | return impactValues;
|
---|
| 55 |
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 | }
|
---|