1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
27 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis_3_4.Tests {
|
---|
29 |
|
---|
30 | [TestClass()]
|
---|
31 | public class StatisticCalculatorsTest {
|
---|
32 | private double[,] testData = new double[,] {
|
---|
33 | {5,1,1,1,2,1,3,1,1,2},
|
---|
34 | {5,4,4,5,7,10,3,2,1,2},
|
---|
35 | {3,1,1,1,2,2,3,1,1,2},
|
---|
36 | {6,8,8,1,3,4,3,7,1,2},
|
---|
37 | {4,1,1,3,2,1,3,1,1,2},
|
---|
38 | {8,10,10,8,7,10,9,7,1,4},
|
---|
39 | {1,1,1,1,2,10,3,1,1,2},
|
---|
40 | {2,1,2,1,2,1,3,1,1,2},
|
---|
41 | {2,1,1,1,2,1,1,1,5,2},
|
---|
42 | {4,2,1,1,2,1,2,1,1,2},
|
---|
43 | {1,1,1,1,1,1,3,1,1,2},
|
---|
44 | {2,1,1,1,2,1,2,1,1,2},
|
---|
45 | {5,3,3,3,2,3,4,4,1,4},
|
---|
46 | {8,7,5,10,7,9,5,5,4,4},
|
---|
47 | {7,4,6,4,6,1,4,3,1,4},
|
---|
48 | {4,1,1,1,2,1,2,1,1,2},
|
---|
49 | {4,1,1,1,2,1,3,1,1,2},
|
---|
50 | {10,7,7,6,4,10,4,1,2,4},
|
---|
51 | {6,1,1,1,2,1,3,1,1,2},
|
---|
52 | {7,3,2,10,5,10,5,4,4,4},
|
---|
53 | {10,5,5,3,6,7,7,10,1,4}
|
---|
54 | };
|
---|
55 |
|
---|
56 | [TestMethod]
|
---|
57 | public void CalculateMeanAndVarianceTest() {
|
---|
58 | System.Random random = new System.Random(31415);
|
---|
59 |
|
---|
60 | int n = testData.GetLength(0);
|
---|
61 | int cols = testData.GetLength(1);
|
---|
62 | {
|
---|
63 | for (int col = 0; col < cols; col++) {
|
---|
64 | double scale = random.NextDouble();
|
---|
65 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
66 | select testData[rows, col] * scale;
|
---|
67 | double[] xs = x.ToArray();
|
---|
68 | double mean_alglib, variance_alglib;
|
---|
69 | mean_alglib = variance_alglib = 0.0;
|
---|
70 | double tmp = 0;
|
---|
71 |
|
---|
72 | alglib.samplemoments(xs, n, out mean_alglib, out variance_alglib, out tmp, out tmp);
|
---|
73 |
|
---|
74 | var calculator = new OnlineMeanAndVarianceCalculator();
|
---|
75 | for (int i = 0; i < n; i++) {
|
---|
76 | calculator.Add(xs[i]);
|
---|
77 | }
|
---|
78 | double mean = calculator.Mean;
|
---|
79 | double variance = calculator.Variance;
|
---|
80 |
|
---|
81 | Assert.IsTrue(mean_alglib.IsAlmost(mean));
|
---|
82 | Assert.IsTrue(variance_alglib.IsAlmost(variance));
|
---|
83 | }
|
---|
84 | }
|
---|
85 | }
|
---|
86 |
|
---|
87 | [TestMethod]
|
---|
88 | public void CalculatePearsonsRSquaredTest() {
|
---|
89 | System.Random random = new System.Random(31415);
|
---|
90 | int n = testData.GetLength(0);
|
---|
91 | int cols = testData.GetLength(1);
|
---|
92 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
93 | for (int c2 = c1 + 1; c2 < cols; c2++) {
|
---|
94 | {
|
---|
95 | double c1Scale = random.NextDouble() * 1E7;
|
---|
96 | double c2Scale = random.NextDouble() * 1E7;
|
---|
97 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
98 | select testData[rows, c1] * c1Scale;
|
---|
99 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
100 | select testData[rows, c2] * c2Scale;
|
---|
101 | double[] xs = x.ToArray();
|
---|
102 | double[] ys = y.ToArray();
|
---|
103 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
104 | r2_alglib *= r2_alglib;
|
---|
105 |
|
---|
106 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
107 | for (int i = 0; i < n; i++) {
|
---|
108 | r2Calculator.Add(xs[i], ys[i]);
|
---|
109 | }
|
---|
110 | double r2 = r2Calculator.RSquared;
|
---|
111 |
|
---|
112 | Assert.IsTrue(r2_alglib.IsAlmost(r2));
|
---|
113 | }
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|
117 | [TestMethod]
|
---|
118 | public void CalculatePearsonsRSquaredOfConstantTest() {
|
---|
119 | System.Random random = new System.Random(31415);
|
---|
120 | int n = 12;
|
---|
121 | int cols = testData.GetLength(1);
|
---|
122 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
123 | double c1Scale = random.NextDouble() * 1E7;
|
---|
124 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
125 | select testData[rows, c1] * c1Scale;
|
---|
126 | IEnumerable<double> y = (new List<double>() { 150494407424305.47 })
|
---|
127 | .Concat(Enumerable.Repeat(150494407424305.47, n - 1));
|
---|
128 | double[] xs = x.ToArray();
|
---|
129 | double[] ys = y.ToArray();
|
---|
130 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
131 | r2_alglib *= r2_alglib;
|
---|
132 |
|
---|
133 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
134 | for (int i = 0; i < n; i++) {
|
---|
135 | r2Calculator.Add(xs[i], ys[i]);
|
---|
136 | }
|
---|
137 | double r2 = r2Calculator.RSquared;
|
---|
138 |
|
---|
139 | Assert.AreEqual(r2_alglib.ToString(), r2.ToString());
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 | [TestMethod]
|
---|
144 | public void CalculateDirectionalSymmetryTest() {
|
---|
145 | // delta: +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2
|
---|
146 | var original = new double[]
|
---|
147 | {
|
---|
148 | 0,
|
---|
149 | 0.01,
|
---|
150 | 1.01,
|
---|
151 | 1,
|
---|
152 | -1,
|
---|
153 | -1.01,
|
---|
154 | -2.01,
|
---|
155 | -2,
|
---|
156 | 0
|
---|
157 | };
|
---|
158 | // delta to original(t-1): +1, +0, -1, -0, -1, +0.01, +0.01, +2
|
---|
159 | var estimated = new double[]
|
---|
160 | {
|
---|
161 | -1,
|
---|
162 | 1,
|
---|
163 | 0.01,
|
---|
164 | 0.01,
|
---|
165 | 1,
|
---|
166 | -1,
|
---|
167 | -1.02,
|
---|
168 | -2.02,
|
---|
169 | 0
|
---|
170 | };
|
---|
171 |
|
---|
172 | // one-step forecast
|
---|
173 | var startValues = original;
|
---|
174 | var actualContinuations = from x in original.Skip(1)
|
---|
175 | select Enumerable.Repeat(x, 1);
|
---|
176 | var predictedContinuations = from x in estimated.Skip(1)
|
---|
177 | select Enumerable.Repeat(x, 1);
|
---|
178 | double expected = 0.5; // half of the predicted deltas are correct
|
---|
179 | OnlineCalculatorError errorState;
|
---|
180 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState);
|
---|
181 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
182 | }
|
---|
183 |
|
---|
184 | [TestMethod]
|
---|
185 | public void CalculateMultiStepDirectionalSymmetryTest() {
|
---|
186 | // delta: +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2
|
---|
187 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 };
|
---|
188 | {
|
---|
189 | var estimated = new double[][]
|
---|
190 | {
|
---|
191 | new double[] {0.01, 1.01, 1, -1, -1.01},
|
---|
192 | new double[] {1.01, 1, -1, -1.01, -2.01},
|
---|
193 | new double[] {1, -1, -1.01, -2.01, -2},
|
---|
194 | new double[] {-1, -1.01, -2.01, -2, 0}
|
---|
195 | };
|
---|
196 |
|
---|
197 | // 5-step forecast
|
---|
198 | var startValues = original.Take(4);
|
---|
199 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
200 | select original.Skip(i).Take(5);
|
---|
201 | var predictedContinuations = estimated;
|
---|
202 | double expected = 1; // predictions are 100% correct
|
---|
203 | OnlineCalculatorError errorState;
|
---|
204 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations,
|
---|
205 | predictedContinuations, out errorState);
|
---|
206 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
207 | }
|
---|
208 | {
|
---|
209 | // only the direction is relevant
|
---|
210 | var estimated = new double[][]
|
---|
211 | {
|
---|
212 | new double[] {0.01, 0.01, 0.01, -0.01, -0.01}, // start=0, original deltas: 0.01, 1.01, 1.00, -1.00, -1.01
|
---|
213 | new double[] {0.02, 0.02, 0.00, 0.00, 0.00}, // start=0.01, original deltas: 1.00, 0.90, -1.01, -1.02, -2.02,
|
---|
214 | new double[] { 1.00, 1.00, 1.00, 1.00, 1.00}, // start=1.01, original deltas: -0.01, -2.01, -2.02, -3.02, -3.01
|
---|
215 | new double[] { 0.90, 0.90, 0.90, 0.90, 0.90} // start=1, original deltas: -2.00, -0.01, -3.01, -3.00, -1.00
|
---|
216 | };
|
---|
217 |
|
---|
218 | // 5-step forecast
|
---|
219 | var startValues = original.Take(4);
|
---|
220 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
221 | select original.Skip(i).Take(5);
|
---|
222 | var predictedContinuations = estimated;
|
---|
223 | double expected = 1; // half of the predicted deltas are correct
|
---|
224 | OnlineCalculatorError errorState;
|
---|
225 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations,
|
---|
226 | predictedContinuations, out errorState);
|
---|
227 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
228 | }
|
---|
229 | {
|
---|
230 | // also check incorrectly predicted directions
|
---|
231 | var estimated = new double[][]
|
---|
232 | {
|
---|
233 | new double[] {0.01, 0.01, 0.01, +0.01, +0.01}, // start=0, original deltas: 0.01, 1.01, 1.00, -1.00, -1.01
|
---|
234 | new double[] {0.02, 0.00, 0.02, 0.00, 0.00}, // start=0.01, original deltas: 1.00, 0.90, -1.01, -1.02, -2.02,
|
---|
235 | new double[] { 1.02, 1.00, 1.02, 1.00, 1.02}, // start=1.01, original deltas: -0.01, -2.01, -2.02, -3.02, -3.01
|
---|
236 | new double[] { 0.90, 0.90, 0.90, 0.90, 0.90} // start=1, original deltas: -2.00, -0.01, -3.01, -3.00, -1.00
|
---|
237 | };
|
---|
238 |
|
---|
239 | // 5-step forecast
|
---|
240 | var startValues = original.Take(4);
|
---|
241 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
242 | select original.Skip(i).Take(5);
|
---|
243 | var predictedContinuations = estimated;
|
---|
244 | double expected = (20 - 7) / 20.0; // half of the predicted deltas are correct
|
---|
245 | OnlineCalculatorError errorState;
|
---|
246 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations,
|
---|
247 | predictedContinuations, out errorState);
|
---|
248 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 |
|
---|
253 | [TestMethod]
|
---|
254 | public void CalculateWeightedDirectionalSymmetryTest() {
|
---|
255 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; // +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2
|
---|
256 | var estimated = new double[] { 1, 2, 2, 1, 1, 0, 0.01, 0.02, 2.02 }; // delta to original: +2, +1.99, -0.01, 0, +1, -1.02, +2.01, +4.02
|
---|
257 | // one-step forecast
|
---|
258 | var startValues = original;
|
---|
259 | var actualContinuations = from x in original.Skip(1)
|
---|
260 | select Enumerable.Repeat(x, 1);
|
---|
261 | var predictedContinuations = from x in estimated.Skip(1)
|
---|
262 | select Enumerable.Repeat(x, 1);
|
---|
263 | // absolute errors = 1.99, 0.99, 0, 2, 1.01, 2.02, 2.02, 2.02
|
---|
264 | // sum of absolute errors for correctly predicted deltas = 2.97
|
---|
265 | // sum of absolute errors for incorrectly predicted deltas = 3.03
|
---|
266 | double expected = 5.03 / 7.02;
|
---|
267 | OnlineCalculatorError errorState;
|
---|
268 | double actual = OnlineWeightedDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState);
|
---|
269 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
270 | }
|
---|
271 |
|
---|
272 | [TestMethod]
|
---|
273 | public void CalculateTheilsUTest() {
|
---|
274 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 };
|
---|
275 | var estimated = new double[] { 1, 1.01, 0.01, 2, 0, -0.01, -1.01, -3, 1 };
|
---|
276 | // one-step forecast
|
---|
277 | var startValues = original;
|
---|
278 | var actualContinuations = from x in original.Skip(1)
|
---|
279 | select Enumerable.Repeat(x, 1);
|
---|
280 | var predictedContinuations = from x in estimated.Skip(1)
|
---|
281 | select Enumerable.Repeat(x, 1);
|
---|
282 | // Sum of squared errors of model y(t+1) = y(t) = 10.0004
|
---|
283 | // Sum of squared errors of predicted values = 8
|
---|
284 | double expected = Math.Sqrt(8 / 10.0004);
|
---|
285 | OnlineCalculatorError errorState;
|
---|
286 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState);
|
---|
287 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
288 | }
|
---|
289 |
|
---|
290 | [TestMethod]
|
---|
291 | public void CalculateMultiStepTheilsUTest() {
|
---|
292 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 };
|
---|
293 | {
|
---|
294 | // prefect prediction
|
---|
295 | var estimated = new double[][]
|
---|
296 | {
|
---|
297 | new double[] {0.01, 1.01, 1, -1, -1.01},
|
---|
298 | new double[] {1.01, 1, -1, -1.01, -2.01},
|
---|
299 | new double[] {1, -1, -1.01, -2.01, -2},
|
---|
300 | new double[] {-1, -1.01, -2.01, -2, 0}
|
---|
301 | };
|
---|
302 | // 5-step forecast
|
---|
303 | var startValues = original.Take(4);
|
---|
304 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
305 | select original.Skip(i).Take(5);
|
---|
306 | var predictedContinuations = estimated;
|
---|
307 |
|
---|
308 | double expected = 0;
|
---|
309 | OnlineCalculatorError errorState;
|
---|
310 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations,
|
---|
311 | predictedContinuations, out errorState);
|
---|
312 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
313 | }
|
---|
314 | {
|
---|
315 | // naive prediction
|
---|
316 | var estimated = new double[][]
|
---|
317 | {
|
---|
318 | new double[] {0, 0, 0, 0, 0},
|
---|
319 | new double[] {0.01, 0.01, 0.01, 0.01, 0.01},
|
---|
320 | new double[] {1.01, 1.01, 1.01, 1.01, 1.01},
|
---|
321 | new double[] {1, 1, 1, 1, 1}
|
---|
322 | };
|
---|
323 | // 5-step forecast
|
---|
324 | var startValues = original.Take(4);
|
---|
325 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
326 | select original.Skip(i).Take(5);
|
---|
327 | var predictedContinuations = estimated;
|
---|
328 |
|
---|
329 | double expected = 1;
|
---|
330 | OnlineCalculatorError errorState;
|
---|
331 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations,
|
---|
332 | predictedContinuations, out errorState);
|
---|
333 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
334 | }
|
---|
335 | {
|
---|
336 | // realistic prediction
|
---|
337 | var estimated = new double[][]
|
---|
338 | {
|
---|
339 | new double[] {0.005, 0.5, 0.5, -0.5, -0.5}, // start = 0
|
---|
340 | new double[] {0.60, 0.5, -0.5, -0.5, -1}, // start = 0.01
|
---|
341 | new double[] {-0.005, 0, 0, -0.5, -1}, // start = 1.01
|
---|
342 | new double[] {-0, 0, -0.5, -1, 0.5} // start = 1
|
---|
343 | };
|
---|
344 | // 5-step forecast
|
---|
345 | var startValues = original.Take(4);
|
---|
346 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
347 | select original.Skip(i).Take(5);
|
---|
348 | var predictedContinuations = estimated;
|
---|
349 |
|
---|
350 | double expected = 0.47558387;
|
---|
351 | OnlineCalculatorError errorState;
|
---|
352 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations,
|
---|
353 | predictedContinuations, out errorState);
|
---|
354 | Assert.AreEqual(expected, actual, 1E-6);
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | [TestMethod]
|
---|
359 | public void CalculateAccuracyTest() {
|
---|
360 | var original = new double[] { 1, 1, 0, 0 };
|
---|
361 | var estimated = new double[] { 1, 0, 1, 0 };
|
---|
362 | double expected = 0.5;
|
---|
363 | OnlineCalculatorError errorState;
|
---|
364 | double actual = OnlineAccuracyCalculator.Calculate(original, estimated, out errorState);
|
---|
365 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
366 | }
|
---|
367 |
|
---|
368 | [TestMethod]
|
---|
369 | public void CalculateMeanAbsolutePercentageErrorTest() {
|
---|
370 | var original = new double[] { 1, 2, 3, 1, 5 };
|
---|
371 | var estimated = new double[] { 2, 1, 3, 1, 0 };
|
---|
372 | double expected = 0.5;
|
---|
373 | OnlineCalculatorError errorState;
|
---|
374 | double actual = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(original, estimated, out errorState);
|
---|
375 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
376 | Assert.AreEqual(OnlineCalculatorError.None, errorState);
|
---|
377 |
|
---|
378 | // if the original contains zero values the result is not defined
|
---|
379 | var original2 = new double[] { 1, 2, 0, 0, 0 };
|
---|
380 | OnlineMeanAbsolutePercentageErrorCalculator.Calculate(original2, estimated, out errorState);
|
---|
381 | Assert.AreEqual(OnlineCalculatorError.InvalidValueAdded, errorState);
|
---|
382 | }
|
---|
383 | }
|
---|
384 | }
|
---|