[5574] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7268] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5574] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7099] | 22 | using System;
|
---|
[5574] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[6880] | 25 | using HeuristicLab.Common;
|
---|
[5944] | 26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[5574] | 27 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis_3_4.Tests {
|
---|
| 29 |
|
---|
| 30 | [TestClass()]
|
---|
| 31 | public class StatisticCalculatorsTest {
|
---|
| 32 | private double[,] testData = new double[,] {
|
---|
| 33 | {5,1,1,1,2,1,3,1,1,2},
|
---|
| 34 | {5,4,4,5,7,10,3,2,1,2},
|
---|
| 35 | {3,1,1,1,2,2,3,1,1,2},
|
---|
| 36 | {6,8,8,1,3,4,3,7,1,2},
|
---|
| 37 | {4,1,1,3,2,1,3,1,1,2},
|
---|
| 38 | {8,10,10,8,7,10,9,7,1,4},
|
---|
| 39 | {1,1,1,1,2,10,3,1,1,2},
|
---|
| 40 | {2,1,2,1,2,1,3,1,1,2},
|
---|
| 41 | {2,1,1,1,2,1,1,1,5,2},
|
---|
| 42 | {4,2,1,1,2,1,2,1,1,2},
|
---|
| 43 | {1,1,1,1,1,1,3,1,1,2},
|
---|
| 44 | {2,1,1,1,2,1,2,1,1,2},
|
---|
| 45 | {5,3,3,3,2,3,4,4,1,4},
|
---|
| 46 | {8,7,5,10,7,9,5,5,4,4},
|
---|
| 47 | {7,4,6,4,6,1,4,3,1,4},
|
---|
| 48 | {4,1,1,1,2,1,2,1,1,2},
|
---|
| 49 | {4,1,1,1,2,1,3,1,1,2},
|
---|
| 50 | {10,7,7,6,4,10,4,1,2,4},
|
---|
| 51 | {6,1,1,1,2,1,3,1,1,2},
|
---|
| 52 | {7,3,2,10,5,10,5,4,4,4},
|
---|
| 53 | {10,5,5,3,6,7,7,10,1,4}
|
---|
| 54 | };
|
---|
| 55 |
|
---|
| 56 | [TestMethod]
|
---|
| 57 | public void CalculateMeanAndVarianceTest() {
|
---|
| 58 | System.Random random = new System.Random(31415);
|
---|
| 59 |
|
---|
| 60 | int n = testData.GetLength(0);
|
---|
| 61 | int cols = testData.GetLength(1);
|
---|
| 62 | {
|
---|
| 63 | for (int col = 0; col < cols; col++) {
|
---|
[6880] | 64 | double scale = random.NextDouble();
|
---|
[5574] | 65 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 66 | select testData[rows, col] * scale;
|
---|
| 67 | double[] xs = x.ToArray();
|
---|
| 68 | double mean_alglib, variance_alglib;
|
---|
| 69 | mean_alglib = variance_alglib = 0.0;
|
---|
| 70 | double tmp = 0;
|
---|
| 71 |
|
---|
| 72 | alglib.samplemoments(xs, n, out mean_alglib, out variance_alglib, out tmp, out tmp);
|
---|
| 73 |
|
---|
| 74 | var calculator = new OnlineMeanAndVarianceCalculator();
|
---|
| 75 | for (int i = 0; i < n; i++) {
|
---|
| 76 | calculator.Add(xs[i]);
|
---|
| 77 | }
|
---|
| 78 | double mean = calculator.Mean;
|
---|
| 79 | double variance = calculator.Variance;
|
---|
| 80 |
|
---|
[6880] | 81 | Assert.IsTrue(mean_alglib.IsAlmost(mean));
|
---|
| 82 | Assert.IsTrue(variance_alglib.IsAlmost(variance));
|
---|
[5574] | 83 | }
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | [TestMethod]
|
---|
| 88 | public void CalculatePearsonsRSquaredTest() {
|
---|
| 89 | System.Random random = new System.Random(31415);
|
---|
| 90 | int n = testData.GetLength(0);
|
---|
| 91 | int cols = testData.GetLength(1);
|
---|
| 92 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
| 93 | for (int c2 = c1 + 1; c2 < cols; c2++) {
|
---|
| 94 | {
|
---|
| 95 | double c1Scale = random.NextDouble() * 1E7;
|
---|
| 96 | double c2Scale = random.NextDouble() * 1E7;
|
---|
| 97 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 98 | select testData[rows, c1] * c1Scale;
|
---|
| 99 | IEnumerable<double> y = from rows in Enumerable.Range(0, n)
|
---|
| 100 | select testData[rows, c2] * c2Scale;
|
---|
| 101 | double[] xs = x.ToArray();
|
---|
| 102 | double[] ys = y.ToArray();
|
---|
| 103 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
| 104 | r2_alglib *= r2_alglib;
|
---|
| 105 |
|
---|
[5944] | 106 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
[5574] | 107 | for (int i = 0; i < n; i++) {
|
---|
| 108 | r2Calculator.Add(xs[i], ys[i]);
|
---|
| 109 | }
|
---|
| 110 | double r2 = r2Calculator.RSquared;
|
---|
| 111 |
|
---|
[6880] | 112 | Assert.IsTrue(r2_alglib.IsAlmost(r2));
|
---|
[5574] | 113 | }
|
---|
| 114 | }
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
[6184] | 117 | [TestMethod]
|
---|
| 118 | public void CalculatePearsonsRSquaredOfConstantTest() {
|
---|
| 119 | System.Random random = new System.Random(31415);
|
---|
| 120 | int n = 12;
|
---|
| 121 | int cols = testData.GetLength(1);
|
---|
| 122 | for (int c1 = 0; c1 < cols; c1++) {
|
---|
| 123 | double c1Scale = random.NextDouble() * 1E7;
|
---|
| 124 | IEnumerable<double> x = from rows in Enumerable.Range(0, n)
|
---|
| 125 | select testData[rows, c1] * c1Scale;
|
---|
[6738] | 126 | IEnumerable<double> y = (new List<double>() { 150494407424305.47 })
|
---|
[6184] | 127 | .Concat(Enumerable.Repeat(150494407424305.47, n - 1));
|
---|
| 128 | double[] xs = x.ToArray();
|
---|
| 129 | double[] ys = y.ToArray();
|
---|
| 130 | double r2_alglib = alglib.pearsoncorrelation(xs, ys, n);
|
---|
| 131 | r2_alglib *= r2_alglib;
|
---|
| 132 |
|
---|
| 133 | var r2Calculator = new OnlinePearsonsRSquaredCalculator();
|
---|
| 134 | for (int i = 0; i < n; i++) {
|
---|
| 135 | r2Calculator.Add(xs[i], ys[i]);
|
---|
| 136 | }
|
---|
| 137 | double r2 = r2Calculator.RSquared;
|
---|
| 138 |
|
---|
| 139 | Assert.AreEqual(r2_alglib.ToString(), r2.ToString());
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
[7099] | 142 |
|
---|
| 143 | [TestMethod]
|
---|
| 144 | public void CalculateDirectionalSymmetryTest() {
|
---|
| 145 | // delta: +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2
|
---|
| 146 | var original = new double[]
|
---|
| 147 | {
|
---|
| 148 | 0,
|
---|
| 149 | 0.01,
|
---|
| 150 | 1.01,
|
---|
| 151 | 1,
|
---|
| 152 | -1,
|
---|
| 153 | -1.01,
|
---|
| 154 | -2.01,
|
---|
| 155 | -2,
|
---|
| 156 | 0
|
---|
| 157 | };
|
---|
| 158 | // delta to original(t-1): +1, +0, -1, -0, -1, +0.01, +0.01, +2
|
---|
| 159 | var estimated = new double[]
|
---|
| 160 | {
|
---|
| 161 | -1,
|
---|
| 162 | 1,
|
---|
| 163 | 0.01,
|
---|
| 164 | 0.01,
|
---|
| 165 | 1,
|
---|
| 166 | -1,
|
---|
| 167 | -1.02,
|
---|
| 168 | -2.02,
|
---|
| 169 | 0
|
---|
| 170 | };
|
---|
| 171 |
|
---|
| 172 | // one-step forecast
|
---|
| 173 | var startValues = original;
|
---|
| 174 | var actualContinuations = from x in original.Skip(1)
|
---|
| 175 | select Enumerable.Repeat(x, 1);
|
---|
| 176 | var predictedContinuations = from x in estimated.Skip(1)
|
---|
| 177 | select Enumerable.Repeat(x, 1);
|
---|
| 178 | double expected = 0.5; // half of the predicted deltas are correct
|
---|
| 179 | OnlineCalculatorError errorState;
|
---|
| 180 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState);
|
---|
| 181 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | [TestMethod]
|
---|
| 185 | public void CalculateMultiStepDirectionalSymmetryTest() {
|
---|
| 186 | // delta: +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2
|
---|
| 187 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 };
|
---|
| 188 | {
|
---|
| 189 | var estimated = new double[][]
|
---|
| 190 | {
|
---|
| 191 | new double[] {0.01, 1.01, 1, -1, -1.01},
|
---|
| 192 | new double[] {1.01, 1, -1, -1.01, -2.01},
|
---|
| 193 | new double[] {1, -1, -1.01, -2.01, -2},
|
---|
| 194 | new double[] {-1, -1.01, -2.01, -2, 0}
|
---|
| 195 | };
|
---|
| 196 |
|
---|
| 197 | // 5-step forecast
|
---|
| 198 | var startValues = original.Take(4);
|
---|
| 199 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
| 200 | select original.Skip(i).Take(5);
|
---|
| 201 | var predictedContinuations = estimated;
|
---|
| 202 | double expected = 1; // predictions are 100% correct
|
---|
| 203 | OnlineCalculatorError errorState;
|
---|
| 204 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations,
|
---|
| 205 | predictedContinuations, out errorState);
|
---|
| 206 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 207 | }
|
---|
| 208 | {
|
---|
| 209 | // only the direction is relevant
|
---|
| 210 | var estimated = new double[][]
|
---|
| 211 | {
|
---|
| 212 | new double[] {0.01, 0.01, 0.01, -0.01, -0.01}, // start=0, original deltas: 0.01, 1.01, 1.00, -1.00, -1.01
|
---|
| 213 | new double[] {0.02, 0.02, 0.00, 0.00, 0.00}, // start=0.01, original deltas: 1.00, 0.90, -1.01, -1.02, -2.02,
|
---|
| 214 | new double[] { 1.00, 1.00, 1.00, 1.00, 1.00}, // start=1.01, original deltas: -0.01, -2.01, -2.02, -3.02, -3.01
|
---|
| 215 | new double[] { 0.90, 0.90, 0.90, 0.90, 0.90} // start=1, original deltas: -2.00, -0.01, -3.01, -3.00, -1.00
|
---|
| 216 | };
|
---|
| 217 |
|
---|
| 218 | // 5-step forecast
|
---|
| 219 | var startValues = original.Take(4);
|
---|
| 220 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
| 221 | select original.Skip(i).Take(5);
|
---|
| 222 | var predictedContinuations = estimated;
|
---|
| 223 | double expected = 1; // half of the predicted deltas are correct
|
---|
| 224 | OnlineCalculatorError errorState;
|
---|
| 225 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations,
|
---|
| 226 | predictedContinuations, out errorState);
|
---|
| 227 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 228 | }
|
---|
| 229 | {
|
---|
| 230 | // also check incorrectly predicted directions
|
---|
| 231 | var estimated = new double[][]
|
---|
| 232 | {
|
---|
| 233 | new double[] {0.01, 0.01, 0.01, +0.01, +0.01}, // start=0, original deltas: 0.01, 1.01, 1.00, -1.00, -1.01
|
---|
| 234 | new double[] {0.02, 0.00, 0.02, 0.00, 0.00}, // start=0.01, original deltas: 1.00, 0.90, -1.01, -1.02, -2.02,
|
---|
| 235 | new double[] { 1.02, 1.00, 1.02, 1.00, 1.02}, // start=1.01, original deltas: -0.01, -2.01, -2.02, -3.02, -3.01
|
---|
| 236 | new double[] { 0.90, 0.90, 0.90, 0.90, 0.90} // start=1, original deltas: -2.00, -0.01, -3.01, -3.00, -1.00
|
---|
| 237 | };
|
---|
| 238 |
|
---|
| 239 | // 5-step forecast
|
---|
| 240 | var startValues = original.Take(4);
|
---|
| 241 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
| 242 | select original.Skip(i).Take(5);
|
---|
| 243 | var predictedContinuations = estimated;
|
---|
| 244 | double expected = (20 - 7) / 20.0; // half of the predicted deltas are correct
|
---|
| 245 | OnlineCalculatorError errorState;
|
---|
| 246 | double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations,
|
---|
| 247 | predictedContinuations, out errorState);
|
---|
| 248 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 |
|
---|
| 253 | [TestMethod]
|
---|
| 254 | public void CalculateWeightedDirectionalSymmetryTest() {
|
---|
| 255 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; // +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2
|
---|
| 256 | var estimated = new double[] { 1, 2, 2, 1, 1, 0, 0.01, 0.02, 2.02 }; // delta to original: +2, +1.99, -0.01, 0, +1, -1.02, +2.01, +4.02
|
---|
| 257 | // one-step forecast
|
---|
| 258 | var startValues = original;
|
---|
| 259 | var actualContinuations = from x in original.Skip(1)
|
---|
| 260 | select Enumerable.Repeat(x, 1);
|
---|
| 261 | var predictedContinuations = from x in estimated.Skip(1)
|
---|
| 262 | select Enumerable.Repeat(x, 1);
|
---|
| 263 | // absolute errors = 1.99, 0.99, 0, 2, 1.01, 2.02, 2.02, 2.02
|
---|
| 264 | // sum of absolute errors for correctly predicted deltas = 2.97
|
---|
| 265 | // sum of absolute errors for incorrectly predicted deltas = 3.03
|
---|
| 266 | double expected = 5.03 / 7.02;
|
---|
| 267 | OnlineCalculatorError errorState;
|
---|
| 268 | double actual = OnlineWeightedDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState);
|
---|
| 269 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | [TestMethod]
|
---|
| 273 | public void CalculateTheilsUTest() {
|
---|
| 274 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 };
|
---|
| 275 | var estimated = new double[] { 1, 1.01, 0.01, 2, 0, -0.01, -1.01, -3, 1 };
|
---|
| 276 | // one-step forecast
|
---|
| 277 | var startValues = original;
|
---|
| 278 | var actualContinuations = from x in original.Skip(1)
|
---|
| 279 | select Enumerable.Repeat(x, 1);
|
---|
| 280 | var predictedContinuations = from x in estimated.Skip(1)
|
---|
| 281 | select Enumerable.Repeat(x, 1);
|
---|
| 282 | // Sum of squared errors of model y(t+1) = y(t) = 10.0004
|
---|
| 283 | // Sum of squared errors of predicted values = 8
|
---|
| 284 | double expected = Math.Sqrt(8 / 10.0004);
|
---|
| 285 | OnlineCalculatorError errorState;
|
---|
| 286 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState);
|
---|
| 287 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | [TestMethod]
|
---|
| 291 | public void CalculateMultiStepTheilsUTest() {
|
---|
| 292 | var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 };
|
---|
| 293 | {
|
---|
| 294 | // prefect prediction
|
---|
| 295 | var estimated = new double[][]
|
---|
| 296 | {
|
---|
| 297 | new double[] {0.01, 1.01, 1, -1, -1.01},
|
---|
| 298 | new double[] {1.01, 1, -1, -1.01, -2.01},
|
---|
| 299 | new double[] {1, -1, -1.01, -2.01, -2},
|
---|
| 300 | new double[] {-1, -1.01, -2.01, -2, 0}
|
---|
| 301 | };
|
---|
| 302 | // 5-step forecast
|
---|
| 303 | var startValues = original.Take(4);
|
---|
| 304 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
| 305 | select original.Skip(i).Take(5);
|
---|
| 306 | var predictedContinuations = estimated;
|
---|
| 307 |
|
---|
| 308 | double expected = 0;
|
---|
| 309 | OnlineCalculatorError errorState;
|
---|
| 310 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations,
|
---|
| 311 | predictedContinuations, out errorState);
|
---|
| 312 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 313 | }
|
---|
| 314 | {
|
---|
| 315 | // naive prediction
|
---|
| 316 | var estimated = new double[][]
|
---|
| 317 | {
|
---|
| 318 | new double[] {0, 0, 0, 0, 0},
|
---|
| 319 | new double[] {0.01, 0.01, 0.01, 0.01, 0.01},
|
---|
| 320 | new double[] {1.01, 1.01, 1.01, 1.01, 1.01},
|
---|
| 321 | new double[] {1, 1, 1, 1, 1}
|
---|
| 322 | };
|
---|
| 323 | // 5-step forecast
|
---|
| 324 | var startValues = original.Take(4);
|
---|
| 325 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
| 326 | select original.Skip(i).Take(5);
|
---|
| 327 | var predictedContinuations = estimated;
|
---|
| 328 |
|
---|
| 329 | double expected = 1;
|
---|
| 330 | OnlineCalculatorError errorState;
|
---|
| 331 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations,
|
---|
| 332 | predictedContinuations, out errorState);
|
---|
| 333 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 334 | }
|
---|
| 335 | {
|
---|
| 336 | // realistic prediction
|
---|
| 337 | var estimated = new double[][]
|
---|
| 338 | {
|
---|
| 339 | new double[] {0.005, 0.5, 0.5, -0.5, -0.5}, // start = 0
|
---|
| 340 | new double[] {0.60, 0.5, -0.5, -0.5, -1}, // start = 0.01
|
---|
| 341 | new double[] {-0.005, 0, 0, -0.5, -1}, // start = 1.01
|
---|
| 342 | new double[] {-0, 0, -0.5, -1, 0.5} // start = 1
|
---|
| 343 | };
|
---|
| 344 | // 5-step forecast
|
---|
| 345 | var startValues = original.Take(4);
|
---|
| 346 | var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5)
|
---|
| 347 | select original.Skip(i).Take(5);
|
---|
| 348 | var predictedContinuations = estimated;
|
---|
| 349 |
|
---|
| 350 | double expected = 0.47558387;
|
---|
| 351 | OnlineCalculatorError errorState;
|
---|
| 352 | double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations,
|
---|
| 353 | predictedContinuations, out errorState);
|
---|
| 354 | Assert.AreEqual(expected, actual, 1E-6);
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 |
|
---|
| 358 | [TestMethod]
|
---|
| 359 | public void CalculateAccuracyTest() {
|
---|
| 360 | var original = new double[] { 1, 1, 0, 0 };
|
---|
| 361 | var estimated = new double[] { 1, 0, 1, 0 };
|
---|
| 362 | double expected = 0.5;
|
---|
| 363 | OnlineCalculatorError errorState;
|
---|
| 364 | double actual = OnlineAccuracyCalculator.Calculate(original, estimated, out errorState);
|
---|
| 365 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | [TestMethod]
|
---|
| 369 | public void CalculateMeanAbsolutePercentageErrorTest() {
|
---|
| 370 | var original = new double[] { 1, 2, 3, 1, 5 };
|
---|
| 371 | var estimated = new double[] { 2, 1, 3, 1, 0 };
|
---|
| 372 | double expected = 0.5;
|
---|
| 373 | OnlineCalculatorError errorState;
|
---|
| 374 | double actual = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(original, estimated, out errorState);
|
---|
| 375 | Assert.AreEqual(expected, actual, 1E-9);
|
---|
| 376 | Assert.AreEqual(OnlineCalculatorError.None, errorState);
|
---|
| 377 |
|
---|
| 378 | // if the original contains zero values the result is not defined
|
---|
| 379 | var original2 = new double[] { 1, 2, 0, 0, 0 };
|
---|
| 380 | OnlineMeanAbsolutePercentageErrorCalculator.Calculate(original2, estimated, out errorState);
|
---|
| 381 | Assert.AreEqual(OnlineCalculatorError.InvalidValueAdded, errorState);
|
---|
| 382 | }
|
---|
[5574] | 383 | }
|
---|
| 384 | }
|
---|