[5952] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7268] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5952] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Diagnostics;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Random;
|
---|
| 26 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Tests {
|
---|
| 29 | [TestClass]
|
---|
| 30 | public class OnlineCalculatorPerformanceTest {
|
---|
| 31 | private const int Rows = 5000;
|
---|
| 32 | private const int Columns = 2;
|
---|
| 33 | private const int Repetitions = 10000;
|
---|
| 34 |
|
---|
| 35 | private TestContext testContextInstance;
|
---|
| 36 |
|
---|
| 37 | /// <summary>
|
---|
| 38 | ///Gets or sets the test context which provides
|
---|
| 39 | ///information about and functionality for the current test run.
|
---|
| 40 | ///</summary>
|
---|
| 41 | public TestContext TestContext {
|
---|
| 42 | get { return testContextInstance; }
|
---|
| 43 | set { testContextInstance = value; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | [TestMethod]
|
---|
| 48 | public void OnlineAccuracyCalculatorPerformanceTest() {
|
---|
| 49 | TestCalculatorPerfomance(OnlineAccuracyCalculator.Calculate);
|
---|
| 50 | }
|
---|
| 51 | [TestMethod]
|
---|
| 52 | public void OnlineCovarianceCalculatorPerformanceTest() {
|
---|
| 53 | TestCalculatorPerfomance(OnlineCovarianceCalculator.Calculate);
|
---|
| 54 | }
|
---|
| 55 | [TestMethod]
|
---|
| 56 | public void OnlineMeanAbsolutePercentageErrorCalculatorPerformanceTest() {
|
---|
| 57 | TestCalculatorPerfomance(OnlineMeanAbsolutePercentageErrorCalculator.Calculate);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | [TestMethod]
|
---|
| 61 | public void OnlineMeanSquaredErrorCalculatorPerformanceTest() {
|
---|
| 62 | TestCalculatorPerfomance(OnlineMeanSquaredErrorCalculator.Calculate);
|
---|
| 63 | }
|
---|
| 64 | [TestMethod]
|
---|
| 65 | public void OnlineNormalizedMeanSquaredErrorCalculatorPerformanceTest() {
|
---|
| 66 | TestCalculatorPerfomance(OnlineNormalizedMeanSquaredErrorCalculator.Calculate);
|
---|
| 67 | }
|
---|
| 68 | [TestMethod]
|
---|
| 69 | public void OnlinePearsonsRSquaredCalculatorPerformanceTest() {
|
---|
| 70 | TestCalculatorPerfomance(OnlinePearsonsRSquaredCalculator.Calculate);
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | private delegate double CalcateFunc(IEnumerable<double> estimated, IEnumerable<double> original, out OnlineCalculatorError errorState);
|
---|
| 74 | private void TestCalculatorPerfomance(CalcateFunc calculateFunc) {
|
---|
| 75 | var twister = new MersenneTwister(31415);
|
---|
| 76 | var dataset = CreateRandomDataset(twister, Rows, Columns);
|
---|
[5963] | 77 | OnlineCalculatorError errorState = OnlineCalculatorError.None; ;
|
---|
[5952] | 78 |
|
---|
| 79 | Stopwatch watch = new Stopwatch();
|
---|
| 80 | watch.Start();
|
---|
| 81 | for (int i = 0; i < Repetitions; i++) {
|
---|
[6740] | 82 | double value = calculateFunc(dataset.GetDoubleValues("y"), dataset.GetDoubleValues("x0"), out errorState);
|
---|
[5952] | 83 | }
|
---|
[5963] | 84 | Assert.AreEqual(errorState, OnlineCalculatorError.None);
|
---|
[5952] | 85 | watch.Stop();
|
---|
| 86 |
|
---|
| 87 | TestContext.WriteLine("");
|
---|
| 88 | TestContext.WriteLine("Calculated Rows per milisecond: {0}.", Rows * Repetitions * 1.0 / watch.ElapsedMilliseconds);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) {
|
---|
| 92 | double[,] data = new double[rows, columns];
|
---|
| 93 | for (int i = 0; i < rows; i++) {
|
---|
| 94 | for (int j = 0; j < columns; j++) {
|
---|
| 95 | data[i, j] = twister.NextDouble() * 2.0 - 1.0;
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | IEnumerable<string> variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString()));
|
---|
| 99 | Dataset ds = new Dataset(variableNames, data);
|
---|
| 100 | return ds;
|
---|
| 101 | }
|
---|
| 102 | }
|
---|
| 103 | }
|
---|