1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | public abstract class TimeSeriesPrognosisSolutionBase : RegressionSolutionBase, ITimeSeriesPrognosisSolution {
|
---|
33 | #region result names
|
---|
34 | protected const string TrainingDirectionalSymmetryResultName = "Average directional symmetry (training)";
|
---|
35 | protected const string TestDirectionalSymmetryResultName = "Average directional symmetry (test)";
|
---|
36 | protected const string TrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)";
|
---|
37 | protected const string TestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)";
|
---|
38 | protected const string TrainingTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (training)";
|
---|
39 | protected const string TestTheilsUStatisticLastResultName = "Theil's U2 (AR1) (test)";
|
---|
40 | protected const string TrainingTheilsUStatisticMeanResultName = "Theil's U2 (mean) (training)";
|
---|
41 | protected const string TestTheilsUStatisticMeanResultName = "Theil's U2 (mean) (test)";
|
---|
42 | protected const string TrainingTheilsUStatisticMovingAverageResultName = "Theil's U2 (moving average) (training)";
|
---|
43 | protected const string TestTheilsUStatisticMovingAverageResultName = "Theil's U2 (moving average) (test)";
|
---|
44 |
|
---|
45 | protected const string PrognosisTrainingMeanSquaredErrorResultName = "Prognosis " + TrainingMeanSquaredErrorResultName;
|
---|
46 | protected const string PrognosisTestMeanSquaredErrorResultName = "Prognosis " + TestMeanSquaredErrorResultName;
|
---|
47 | protected const string PrognosisTrainingMeanAbsoluteErrorResultName = "Prognosis " + TrainingMeanAbsoluteErrorResultName;
|
---|
48 | protected const string PrognosisTestMeanAbsoluteErrorResultName = "Prognosis " + TestMeanAbsoluteErrorResultName;
|
---|
49 | protected const string PrognosisTrainingSquaredCorrelationResultName = "Prognosis " + TrainingSquaredCorrelationResultName;
|
---|
50 | protected const string PrognosisTestSquaredCorrelationResultName = "Prognosis " + TestSquaredCorrelationResultName;
|
---|
51 | protected const string PrognosisTrainingRelativeErrorResultName = "Prognosis " + TrainingRelativeErrorResultName;
|
---|
52 | protected const string PrognosisTestRelativeErrorResultName = "Prognosis " + TestRelativeErrorResultName;
|
---|
53 | protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultName = "Prognosis " + TrainingNormalizedMeanSquaredErrorResultName;
|
---|
54 | protected const string PrognosisTestNormalizedMeanSquaredErrorResultName = "Prognosis " + TestNormalizedMeanSquaredErrorResultName;
|
---|
55 | protected const string PrognosisTrainingMeanErrorResultName = "Prognosis " + TrainingMeanErrorResultName;
|
---|
56 | protected const string PrognosisTestMeanErrorResultName = "Prognosis " + TestMeanErrorResultName;
|
---|
57 |
|
---|
58 | protected const string PrognosisTrainingDirectionalSymmetryResultName = "Prognosis " + TrainingDirectionalSymmetryResultName;
|
---|
59 | protected const string PrognosisTestDirectionalSymmetryResultName = "Prognosis " + TestDirectionalSymmetryResultName;
|
---|
60 | protected const string PrognosisTrainingWeightedDirectionalSymmetryResultName = "Prognosis " + TrainingWeightedDirectionalSymmetryResultName;
|
---|
61 | protected const string PrognosisTestWeightedDirectionalSymmetryResultName = "Prognosis " + TestWeightedDirectionalSymmetryResultName;
|
---|
62 | protected const string PrognosisTrainingTheilsUStatisticAR1ResultName = "Prognosis " + TrainingTheilsUStatisticAR1ResultName;
|
---|
63 | protected const string PrognosisTestTheilsUStatisticAR1ResultName = "Prognosis " + TestTheilsUStatisticLastResultName;
|
---|
64 | protected const string PrognosisTrainingTheilsUStatisticMeanResultName = "Prognosis " + TrainingTheilsUStatisticMeanResultName;
|
---|
65 | protected const string PrognosisTestTheilsUStatisticMeanResultName = "Prognosis " + TestTheilsUStatisticMeanResultName;
|
---|
66 | protected const string PrognosisTrainingTheilsUStatisticMovingAverageResultName = "Prognosis " + TrainingTheilsUStatisticMovingAverageResultName;
|
---|
67 | protected const string PrognosisTestTheilsUStatisticMovingAverageResultName = "Prognosis " + TestTheilsUStatisticMovingAverageResultName;
|
---|
68 | #endregion
|
---|
69 |
|
---|
70 | #region result descriptions
|
---|
71 | protected const string TrainingDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the training partition";
|
---|
72 | protected const string TestDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the test partition";
|
---|
73 | protected const string TrainingWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the training partition";
|
---|
74 | protected const string TestWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the test partition";
|
---|
75 | protected const string TrainingTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the training partition";
|
---|
76 | protected const string TestTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the test partition";
|
---|
77 | protected const string TrainingTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean model) of the forecasts of the model on the training partition";
|
---|
78 | protected const string TestTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition";
|
---|
79 | protected const string TrainingTheilsUStatisticMovingAverageResultDescription = "The Theil's U statistic (reference: moving average model) of the forecasts of the model on the training partition";
|
---|
80 | protected const string TestTheilsUStatisticMovingAverageResultDescription = "The Theil's U statistic (reference: moving average model) of the forecasts of the model on the test partition";
|
---|
81 |
|
---|
82 | protected const string PrognosisTrainingMeanSquaredErrorResultDescription = TrainingMeanSquaredErrorResultDescription;
|
---|
83 | protected const string PrognosisTestMeanSquaredErrorResultDescription = TestMeanSquaredErrorResultDescription;
|
---|
84 | protected const string PrognosisTrainingMeanAbsoluteErrorResultDescription = TrainingMeanAbsoluteErrorResultDescription;
|
---|
85 | protected const string PrognosisTestMeanAbsoluteErrorResultDescription = TestMeanAbsoluteErrorResultDescription;
|
---|
86 | protected const string PrognosisTrainingSquaredCorrelationResultDescription = TrainingSquaredCorrelationResultDescription;
|
---|
87 | protected const string PrognosisTestSquaredCorrelationResultDescription = TestSquaredCorrelationResultDescription;
|
---|
88 | protected const string PrognosisTrainingRelativeErrorResultDescription = TrainingRelativeErrorResultDescription;
|
---|
89 | protected const string PrognosisTestRelativeErrorResultDescription = TestRelativeErrorResultDescription;
|
---|
90 | protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultDescription = TrainingNormalizedMeanSquaredErrorResultDescription;
|
---|
91 | protected const string PrognosisTestNormalizedMeanSquaredErrorResultDescription = TestNormalizedMeanSquaredErrorResultDescription;
|
---|
92 | protected const string PrognosisTrainingMeanErrorResultDescription = TrainingMeanErrorResultDescription;
|
---|
93 | protected const string PrognosisTestMeanErrorResultDescription = TestMeanErrorResultDescription;
|
---|
94 |
|
---|
95 | protected const string PrognosisTrainingDirectionalSymmetryResultDescription = TrainingDirectionalSymmetryResultDescription;
|
---|
96 | protected const string PrognosisTestDirectionalSymmetryResultDescription = TestDirectionalSymmetryResultDescription;
|
---|
97 | protected const string PrognosisTrainingWeightedDirectionalSymmetryResultDescription = TrainingWeightedDirectionalSymmetryResultDescription;
|
---|
98 | protected const string PrognosisTestWeightedDirectionalSymmetryResultDescription = TestWeightedDirectionalSymmetryResultDescription;
|
---|
99 | protected const string PrognosisTrainingTheilsUStatisticAR1ResultDescription = TrainingTheilsUStatisticAR1ResultDescription;
|
---|
100 | protected const string PrognosisTestTheilsUStatisticAR1ResultDescription = TestTheilsUStatisticAR1ResultDescription;
|
---|
101 | protected const string PrognosisTrainingTheilsUStatisticMeanResultDescription = TrainingTheilsUStatisticMeanResultDescription;
|
---|
102 | protected const string PrognosisTestTheilsUStatisticMeanResultDescription = TestTheilsUStatisticMeanResultDescription;
|
---|
103 | protected const string PrognosisTrainingTheilsUStatisticMovingAverageResultDescription = TrainingTheilsUStatisticMovingAverageResultDescription;
|
---|
104 | protected const string PrognosisTestTheilsUStatisticMovingAverageResultDescription = TestTheilsUStatisticMovingAverageResultDescription;
|
---|
105 | #endregion
|
---|
106 |
|
---|
107 | public new ITimeSeriesPrognosisModel Model {
|
---|
108 | get { return (ITimeSeriesPrognosisModel)base.Model; }
|
---|
109 | protected set { base.Model = value; }
|
---|
110 | }
|
---|
111 |
|
---|
112 | public new ITimeSeriesPrognosisProblemData ProblemData {
|
---|
113 | get { return (ITimeSeriesPrognosisProblemData)base.ProblemData; }
|
---|
114 | set { base.ProblemData = value; }
|
---|
115 | }
|
---|
116 |
|
---|
117 | public abstract IEnumerable<IEnumerable<double>> GetPrognosedValues(IEnumerable<int> rows, IEnumerable<int> horizon);
|
---|
118 |
|
---|
119 | #region Results
|
---|
120 | public double TrainingDirectionalSymmetry {
|
---|
121 | get { return ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value; }
|
---|
122 | private set { ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value = value; }
|
---|
123 | }
|
---|
124 | public double TestDirectionalSymmetry {
|
---|
125 | get { return ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value; }
|
---|
126 | private set { ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value = value; }
|
---|
127 | }
|
---|
128 | public double TrainingWeightedDirectionalSymmetry {
|
---|
129 | get { return ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value; }
|
---|
130 | private set { ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value = value; }
|
---|
131 | }
|
---|
132 | public double TestWeightedDirectionalSymmetry {
|
---|
133 | get { return ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value; }
|
---|
134 | private set { ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value = value; }
|
---|
135 | }
|
---|
136 | public double TrainingTheilsUStatisticAR1 {
|
---|
137 | get { return ((DoubleValue)this[TrainingTheilsUStatisticAR1ResultName].Value).Value; }
|
---|
138 | private set { ((DoubleValue)this[TrainingTheilsUStatisticAR1ResultName].Value).Value = value; }
|
---|
139 | }
|
---|
140 | public double TestTheilsUStatisticAR1 {
|
---|
141 | get { return ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value; }
|
---|
142 | private set { ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value = value; }
|
---|
143 | }
|
---|
144 | public double TrainingTheilsUStatisticMean {
|
---|
145 | get { return ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value; }
|
---|
146 | private set { ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value = value; }
|
---|
147 | }
|
---|
148 | public double TestTheilsUStatisticMean {
|
---|
149 | get { return ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value; }
|
---|
150 | private set { ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value = value; }
|
---|
151 | }
|
---|
152 | public double TrainingTheilsUStatisticMovingAverage {
|
---|
153 | get { return ((DoubleValue)this[TrainingTheilsUStatisticMovingAverageResultName].Value).Value; }
|
---|
154 | private set { ((DoubleValue)this[TrainingTheilsUStatisticMovingAverageResultName].Value).Value = value; }
|
---|
155 | }
|
---|
156 | public double TestTheilsUStatisticMovingAverage {
|
---|
157 | get { return ((DoubleValue)this[TestTheilsUStatisticMovingAverageResultName].Value).Value; }
|
---|
158 | private set { ((DoubleValue)this[TestTheilsUStatisticMovingAverageResultName].Value).Value = value; }
|
---|
159 | }
|
---|
160 |
|
---|
161 | //prognosis results for different horizons
|
---|
162 | public double PrognosisTrainingMeanSquaredError {
|
---|
163 | get {
|
---|
164 | if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) return double.NaN;
|
---|
165 | return ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value;
|
---|
166 | }
|
---|
167 | private set {
|
---|
168 | if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingMeanSquaredErrorResultName, PrognosisTrainingMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
169 | ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value = value;
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | public double PrognosisTestMeanSquaredError {
|
---|
174 | get {
|
---|
175 | if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) return double.NaN;
|
---|
176 | return ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value;
|
---|
177 | }
|
---|
178 | private set {
|
---|
179 | if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) Add(new Result(PrognosisTestMeanSquaredErrorResultName, PrognosisTestMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
180 | ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value = value;
|
---|
181 | }
|
---|
182 | }
|
---|
183 |
|
---|
184 | public double PrognosisTrainingMeanAbsoluteError {
|
---|
185 | get {
|
---|
186 | if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) return double.NaN;
|
---|
187 | return ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value;
|
---|
188 | }
|
---|
189 | private set {
|
---|
190 | if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTrainingMeanAbsoluteErrorResultName, PrognosisTrainingMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
191 | ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value = value;
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 | public double PrognosisTestMeanAbsoluteError {
|
---|
196 | get {
|
---|
197 | if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) return double.NaN;
|
---|
198 | return ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value;
|
---|
199 | }
|
---|
200 | private set {
|
---|
201 | if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTestMeanAbsoluteErrorResultName, PrognosisTestMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
202 | ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value = value;
|
---|
203 | }
|
---|
204 | }
|
---|
205 |
|
---|
206 | public double PrognosisTrainingRSquared {
|
---|
207 | get {
|
---|
208 | if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) return double.NaN;
|
---|
209 | return ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value;
|
---|
210 | }
|
---|
211 | private set {
|
---|
212 | if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) Add(new Result(PrognosisTrainingSquaredCorrelationResultName, PrognosisTrainingSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
213 | ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value = value;
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | public double PrognosisTestRSquared {
|
---|
218 | get {
|
---|
219 | if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) return double.NaN;
|
---|
220 | return ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value;
|
---|
221 | }
|
---|
222 | private set {
|
---|
223 | if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) Add(new Result(PrognosisTestSquaredCorrelationResultName, PrognosisTestSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
224 | ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value = value;
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | public double PrognosisTrainingRelativeError {
|
---|
229 | get {
|
---|
230 | if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) return double.NaN;
|
---|
231 | return ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value;
|
---|
232 | }
|
---|
233 | private set {
|
---|
234 | if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) Add(new Result(PrognosisTrainingRelativeErrorResultName, PrognosisTrainingRelativeErrorResultDescription, new DoubleValue()));
|
---|
235 | ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value = value;
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 | public double PrognosisTestRelativeError {
|
---|
240 | get {
|
---|
241 | if (!ContainsKey(PrognosisTestRelativeErrorResultName)) return double.NaN;
|
---|
242 | return ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value;
|
---|
243 | }
|
---|
244 | private set {
|
---|
245 | if (!ContainsKey(PrognosisTestRelativeErrorResultName)) Add(new Result(PrognosisTestRelativeErrorResultName, PrognosisTestRelativeErrorResultDescription, new DoubleValue()));
|
---|
246 | ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value = value;
|
---|
247 | }
|
---|
248 | }
|
---|
249 |
|
---|
250 | public double PrognosisTrainingNormalizedMeanSquaredError {
|
---|
251 | get {
|
---|
252 | if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) return double.NaN;
|
---|
253 | return ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value;
|
---|
254 | }
|
---|
255 | private set {
|
---|
256 | if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingNormalizedMeanSquaredErrorResultName, PrognosisTrainingNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
257 | ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value = value;
|
---|
258 | }
|
---|
259 | }
|
---|
260 |
|
---|
261 | public double PrognosisTestNormalizedMeanSquaredError {
|
---|
262 | get {
|
---|
263 | if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) return double.NaN;
|
---|
264 | return ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value;
|
---|
265 | }
|
---|
266 | private set {
|
---|
267 | if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTestNormalizedMeanSquaredErrorResultName, PrognosisTestNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
268 | ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value = value;
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | public double PrognosisTrainingMeanError {
|
---|
273 | get {
|
---|
274 | if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) return double.NaN;
|
---|
275 | return ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value;
|
---|
276 | }
|
---|
277 | private set {
|
---|
278 | if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) Add(new Result(PrognosisTrainingMeanErrorResultName, PrognosisTrainingMeanErrorResultDescription, new DoubleValue()));
|
---|
279 | ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value = value;
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | public double PrognosisTestMeanError {
|
---|
284 | get {
|
---|
285 | if (!ContainsKey(PrognosisTestMeanErrorResultName)) return double.NaN;
|
---|
286 | return ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value;
|
---|
287 | }
|
---|
288 | private set {
|
---|
289 | if (!ContainsKey(PrognosisTestMeanErrorResultName)) Add(new Result(PrognosisTestMeanErrorResultName, PrognosisTestMeanErrorResultDescription, new DoubleValue()));
|
---|
290 | ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value = value;
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 |
|
---|
295 | public double PrognosisTrainingDirectionalSymmetry {
|
---|
296 | get {
|
---|
297 | if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) return double.NaN;
|
---|
298 | return ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value;
|
---|
299 | }
|
---|
300 | private set {
|
---|
301 | if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingDirectionalSymmetryResultName, PrognosisTrainingDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
302 | ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value = value;
|
---|
303 | }
|
---|
304 | }
|
---|
305 | public double PrognosisTestDirectionalSymmetry {
|
---|
306 | get {
|
---|
307 | if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) return double.NaN;
|
---|
308 | return ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value;
|
---|
309 | }
|
---|
310 | private set {
|
---|
311 | if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) Add(new Result(PrognosisTestDirectionalSymmetryResultName, PrognosisTestDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
312 | ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value = value;
|
---|
313 | }
|
---|
314 | }
|
---|
315 | public double PrognosisTrainingWeightedDirectionalSymmetry {
|
---|
316 | get {
|
---|
317 | if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) return double.NaN;
|
---|
318 | return ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value;
|
---|
319 | }
|
---|
320 | private set {
|
---|
321 | if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingWeightedDirectionalSymmetryResultName, PrognosisTrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
322 | ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value = value;
|
---|
323 | }
|
---|
324 | }
|
---|
325 | public double PrognosisTestWeightedDirectionalSymmetry {
|
---|
326 | get {
|
---|
327 | if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) return double.NaN;
|
---|
328 | return ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value;
|
---|
329 | }
|
---|
330 | private set {
|
---|
331 | if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTestWeightedDirectionalSymmetryResultName, PrognosisTestWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
332 | ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value = value;
|
---|
333 | }
|
---|
334 | }
|
---|
335 | public double PrognosisTrainingTheilsUStatisticAR1 {
|
---|
336 | get {
|
---|
337 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) return double.NaN;
|
---|
338 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value;
|
---|
339 | }
|
---|
340 | private set {
|
---|
341 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticAR1ResultName, PrognosisTrainingTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
342 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value = value;
|
---|
343 | }
|
---|
344 | }
|
---|
345 | public double PrognosisTestTheilsUStatisticAR1 {
|
---|
346 | get {
|
---|
347 | if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) return double.NaN;
|
---|
348 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value;
|
---|
349 | }
|
---|
350 | private set {
|
---|
351 | if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTestTheilsUStatisticAR1ResultName, PrognosisTestTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
352 | ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value = value;
|
---|
353 | }
|
---|
354 | }
|
---|
355 | public double PrognosisTrainingTheilsUStatisticMean {
|
---|
356 | get {
|
---|
357 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) return double.NaN;
|
---|
358 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value;
|
---|
359 | }
|
---|
360 | private set {
|
---|
361 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMeanResultName, PrognosisTrainingTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
362 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value = value;
|
---|
363 | }
|
---|
364 | }
|
---|
365 | public double PrognosisTestTheilsUStatisticMean {
|
---|
366 | get {
|
---|
367 | if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) return double.NaN;
|
---|
368 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value;
|
---|
369 | }
|
---|
370 | private set {
|
---|
371 | if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTestTheilsUStatisticMeanResultName, PrognosisTestTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
372 | ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value = value;
|
---|
373 | }
|
---|
374 | }
|
---|
375 | public double PrognosisTrainingTheilsUStatisticMovingAverage {
|
---|
376 | get {
|
---|
377 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMovingAverageResultName)) return double.NaN;
|
---|
378 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMovingAverageResultName].Value).Value;
|
---|
379 | }
|
---|
380 | private set {
|
---|
381 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMovingAverageResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMovingAverageResultName, PrognosisTrainingTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
382 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMovingAverageResultName].Value).Value = value;
|
---|
383 | }
|
---|
384 | }
|
---|
385 | public double PrognosisTestTheilsUStatisticMovingAverage {
|
---|
386 | get {
|
---|
387 | if (!ContainsKey(PrognosisTestTheilsUStatisticMovingAverageResultName)) return double.NaN;
|
---|
388 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticMovingAverageResultName].Value).Value;
|
---|
389 | }
|
---|
390 | private set {
|
---|
391 | if (!ContainsKey(PrognosisTestTheilsUStatisticMovingAverageResultName)) Add(new Result(PrognosisTestTheilsUStatisticMovingAverageResultName, PrognosisTestTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
392 | ((DoubleValue)this[PrognosisTestTheilsUStatisticMovingAverageResultName].Value).Value = value;
|
---|
393 | }
|
---|
394 | }
|
---|
395 | #endregion
|
---|
396 |
|
---|
397 | public override IEnumerable<double> EstimatedValues {
|
---|
398 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
399 | }
|
---|
400 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
401 | get { return GetEstimatedValues(ProblemData.TrainingIndices); }
|
---|
402 | }
|
---|
403 | public override IEnumerable<double> EstimatedTestValues {
|
---|
404 | get { return GetEstimatedValues(ProblemData.TestIndices); }
|
---|
405 | }
|
---|
406 | public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
407 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
408 | }
|
---|
409 |
|
---|
410 | [StorableConstructor]
|
---|
411 | protected TimeSeriesPrognosisSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
412 | protected TimeSeriesPrognosisSolutionBase(TimeSeriesPrognosisSolutionBase original, Cloner cloner) : base(original, cloner) { }
|
---|
413 | protected TimeSeriesPrognosisSolutionBase(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData)
|
---|
414 | : base(model, problemData) {
|
---|
415 | Add(new Result(TrainingDirectionalSymmetryResultName, TrainingDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
416 | Add(new Result(TestDirectionalSymmetryResultName, TestDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
417 | Add(new Result(TrainingWeightedDirectionalSymmetryResultName, TrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
418 | Add(new Result(TestWeightedDirectionalSymmetryResultName, TestWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
419 | Add(new Result(TrainingTheilsUStatisticAR1ResultName, TrainingTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
420 | Add(new Result(TestTheilsUStatisticLastResultName, TestTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
421 | Add(new Result(TrainingTheilsUStatisticMeanResultName, TrainingTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
422 | Add(new Result(TestTheilsUStatisticMeanResultName, TestTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
423 | Add(new Result(TrainingTheilsUStatisticMovingAverageResultName, TrainingTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
424 | Add(new Result(TestTheilsUStatisticMovingAverageResultName, TestTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
425 | }
|
---|
426 |
|
---|
427 | protected override void RecalculateResults() {
|
---|
428 | base.RecalculateResults();
|
---|
429 | CalculateTimeSeriesResults();
|
---|
430 | CalculateTimeSeriesResults(ProblemData.TrainingHorizon, ProblemData.TestHorizon);
|
---|
431 | }
|
---|
432 |
|
---|
433 | private void CalculateTimeSeriesResults() {
|
---|
434 | OnlineCalculatorError errorState;
|
---|
435 | double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
436 | var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean);
|
---|
437 |
|
---|
438 | double alpha, beta;
|
---|
439 | IEnumerable<double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
440 | OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
441 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha);
|
---|
442 |
|
---|
443 | //MA model
|
---|
444 | const int movingAverageWindowSize = 10;
|
---|
445 | var movingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable);
|
---|
446 |
|
---|
447 | #region Calculate training quality measures
|
---|
448 | IEnumerable<double> trainingTargetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
|
---|
449 | IEnumerable<double> trainingEstimatedValues = EstimatedTrainingValues.ToList();
|
---|
450 | IEnumerable<double> trainingMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
|
---|
451 | IEnumerable<double> trainingAR1ModelPredictions = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
|
---|
452 | IEnumerable<double> trainingMovingAverageModelPredictions = movingAverageModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
|
---|
453 |
|
---|
454 | TrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
455 | TrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingDirectionalSymmetry : 0.0;
|
---|
456 | TrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
457 | TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingWeightedDirectionalSymmetry : 0.0;
|
---|
458 | TrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
|
---|
459 | TrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
460 | TrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
|
---|
461 | TrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMean : double.PositiveInfinity;
|
---|
462 | TrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState);
|
---|
463 | TrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
464 | #endregion
|
---|
465 |
|
---|
466 | #region Calculate test quality measures
|
---|
467 | IEnumerable<double> testTargetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToList();
|
---|
468 | IEnumerable<double> testEstimatedValues = EstimatedTestValues.ToList();
|
---|
469 | IEnumerable<double> testMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
|
---|
470 | IEnumerable<double> testAR1ModelPredictions = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
|
---|
471 | IEnumerable<double> testMovingAverageModelPredictions = movingAverageModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
|
---|
472 |
|
---|
473 | TestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
|
---|
474 | TestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestDirectionalSymmetry : 0.0;
|
---|
475 | TestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
|
---|
476 | TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestWeightedDirectionalSymmetry : 0.0;
|
---|
477 | TestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
|
---|
478 | TestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
479 | TestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
|
---|
480 | TestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMean : double.PositiveInfinity;
|
---|
481 | TestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState);
|
---|
482 | TestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
483 | #endregion
|
---|
484 | }
|
---|
485 |
|
---|
486 | private void CalculateTimeSeriesResults(int trainingHorizon, int testHorizon) {
|
---|
487 | OnlineCalculatorError errorState;
|
---|
488 | //mean model
|
---|
489 | double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
490 | var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean);
|
---|
491 |
|
---|
492 | //AR1 model
|
---|
493 | double alpha, beta;
|
---|
494 | IEnumerable<double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
495 | OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
496 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha);
|
---|
497 |
|
---|
498 | //MA model
|
---|
499 | const int movingAverageWindowSize = 10;
|
---|
500 | var MovingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable);
|
---|
501 |
|
---|
502 | #region Calculate training quality measures
|
---|
503 | if (trainingHorizon != 1) {
|
---|
504 | var trainingHorizions = ProblemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, ProblemData.TrainingPartition.End - r)).ToList();
|
---|
505 | IEnumerable<IEnumerable<double>> trainingTargetValues = ProblemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList();
|
---|
506 | IEnumerable<IEnumerable<double>> trainingEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
507 | IEnumerable<IEnumerable<double>> trainingMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
508 | IEnumerable<IEnumerable<double>> trainingAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
509 | IEnumerable<IEnumerable<double>> trainingMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
510 |
|
---|
511 | IEnumerable<double> originalTrainingValues = trainingTargetValues.SelectMany(x => x).ToList();
|
---|
512 | IEnumerable<double> estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList();
|
---|
513 |
|
---|
514 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
515 | PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
516 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
517 | PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
518 | double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
519 | PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
|
---|
520 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
521 | PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
522 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
523 | PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
524 | double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
525 | PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;
|
---|
526 |
|
---|
527 | PrognosisTrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
528 | PrognosisTrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0;
|
---|
529 | PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
530 | PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0;
|
---|
531 | PrognosisTrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
|
---|
532 | PrognosisTrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
533 | PrognosisTrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
|
---|
534 | PrognosisTrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity;
|
---|
535 | PrognosisTrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState);
|
---|
536 | PrognosisTrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
537 | }
|
---|
538 |
|
---|
539 | #endregion
|
---|
540 |
|
---|
541 | #region Calculate test quality measures
|
---|
542 | if (testHorizon != 1) {
|
---|
543 | var testHorizions = ProblemData.TestIndices.Select(r => Math.Min(testHorizon, ProblemData.TestPartition.End - r)).ToList();
|
---|
544 | IEnumerable<IEnumerable<double>> testTargetValues = ProblemData.TestIndices.Zip(testHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList();
|
---|
545 | IEnumerable<IEnumerable<double>> testEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
546 | IEnumerable<double> testStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
547 | IEnumerable<IEnumerable<double>> testMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
548 | IEnumerable<IEnumerable<double>> testAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
549 | IEnumerable<IEnumerable<double>> testMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
550 |
|
---|
551 | IEnumerable<double> originalTestValues = testTargetValues.SelectMany(x => x).ToList();
|
---|
552 | IEnumerable<double> estimatedTestValues = testEstimatedValues.SelectMany(x => x).ToList();
|
---|
553 |
|
---|
554 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
555 | PrognosisTestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
556 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
557 | PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
558 | double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
559 | PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
|
---|
560 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
561 | PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
562 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
563 | PrognosisTestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
564 | double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
565 | PrognosisTestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN;
|
---|
566 |
|
---|
567 | PrognosisTestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
568 | PrognosisTestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestDirectionalSymmetry : 0.0;
|
---|
569 | PrognosisTestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
570 | PrognosisTestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestWeightedDirectionalSymmetry : 0.0;
|
---|
571 | PrognosisTestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
|
---|
572 | PrognosisTestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
573 | PrognosisTestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
|
---|
574 | PrognosisTestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMean : double.PositiveInfinity;
|
---|
575 | PrognosisTestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState);
|
---|
576 | PrognosisTestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
577 | }
|
---|
578 |
|
---|
579 | #endregion
|
---|
580 | }
|
---|
581 | }
|
---|
582 | }
|
---|