Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionBase.cs @ 7154

Last change on this file since 7154 was 7154, checked in by gkronber, 13 years ago

#1081: worked on multi-variate time series prognosis

File size: 17.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Concurrent;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Data;
27using HeuristicLab.Optimization;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Problems.DataAnalysis {
31  [StorableClass]
32  public abstract class TimeSeriesPrognosisSolutionBase : DataAnalysisSolution, ITimeSeriesPrognosisSolution {
33    private const string TrainingMeanSquaredErrorResultName = "Mean squared error (training)";
34    private const string TestMeanSquaredErrorResultName = "Mean squared error (test)";
35    private const string TrainingMeanAbsoluteErrorResultName = "Mean absolute error (training)";
36    private const string TestMeanAbsoluteErrorResultName = "Mean absolute error (test)";
37    private const string TrainingSquaredCorrelationResultName = "Pearson's R² (training)";
38    private const string TestSquaredCorrelationResultName = "Pearson's R² (test)";
39    private const string TrainingRelativeErrorResultName = "Average relative error (training)";
40    private const string TestRelativeErrorResultName = "Average relative error (test)";
41    private const string TrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)";
42    private const string TestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)";
43    private const string TrainingDirectionalSymmetryResultName = "Average directional symmetry (training)";
44    private const string TestDirectionalSymmetryResultName = "Average directional symmetry (test)";
45    private const string TrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)";
46    private const string TestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)";
47    private const string TrainingTheilsUStatisticResultName = "Average Theil's U (training)";
48    private const string TestTheilsUStatisticResultName = "Average Theil's U (test)";
49
50    public new ITimeSeriesPrognosisModel Model {
51      get { return (ITimeSeriesPrognosisModel)base.Model; }
52      protected set { base.Model = value; }
53    }
54
55    public new ITimeSeriesPrognosisProblemData ProblemData {
56      get { return (ITimeSeriesPrognosisProblemData)base.ProblemData; }
57      set { base.ProblemData = value; }
58    }
59
60    public abstract IEnumerable<IEnumerable<double>> PrognosedTrainingValues { get; }
61    public abstract IEnumerable<IEnumerable<double>> PrognosedTestValues { get; }
62    public abstract IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(IEnumerable<int> rows, int horizon);
63
64    #region Results
65    public double[] TrainingMeanSquaredError {
66      get { return ((DoubleArray)this[TrainingMeanSquaredErrorResultName].Value).ToArray(); }
67      private set { this[TrainingMeanSquaredErrorResultName].Value = new DoubleArray(value); }
68    }
69    public double[] TestMeanSquaredError {
70      get { return ((DoubleArray)this[TestMeanSquaredErrorResultName].Value).ToArray(); }
71      private set { this[TestMeanSquaredErrorResultName].Value = new DoubleArray(value); }
72    }
73    public double[] TrainingMeanAbsoluteError {
74      get { return ((DoubleArray)this[TrainingMeanAbsoluteErrorResultName].Value).ToArray(); }
75      private set { this[TrainingMeanAbsoluteErrorResultName].Value = new DoubleArray(value); }
76    }
77    public double[] TestMeanAbsoluteError {
78      get { return ((DoubleArray)this[TestMeanAbsoluteErrorResultName].Value).ToArray(); }
79      private set { this[TestMeanAbsoluteErrorResultName].Value = new DoubleArray(value); }
80    }
81    public double[] TrainingRSquared {
82      get { return ((DoubleArray)this[TrainingSquaredCorrelationResultName].Value).ToArray(); }
83      private set { this[TrainingSquaredCorrelationResultName].Value = new DoubleArray(value); }
84    }
85    public double[] TestRSquared {
86      get { return ((DoubleArray)this[TestSquaredCorrelationResultName].Value).ToArray(); }
87      private set { this[TestSquaredCorrelationResultName].Value = new DoubleArray(value); }
88    }
89    public double[] TrainingRelativeError {
90      get { return ((DoubleArray)this[TrainingRelativeErrorResultName].Value).ToArray(); }
91      private set { this[TrainingRelativeErrorResultName].Value = new DoubleArray(value); }
92    }
93    public double[] TestRelativeError {
94      get { return ((DoubleArray)this[TestRelativeErrorResultName].Value).ToArray(); }
95      private set { this[TestRelativeErrorResultName].Value = new DoubleArray(value); }
96    }
97    public double[] TrainingNormalizedMeanSquaredError {
98      get { return ((DoubleArray)this[TrainingNormalizedMeanSquaredErrorResultName].Value).ToArray(); }
99      private set { this[TrainingNormalizedMeanSquaredErrorResultName].Value = new DoubleArray(value); }
100    }
101    public double[] TestNormalizedMeanSquaredError {
102      get { return ((DoubleArray)this[TestNormalizedMeanSquaredErrorResultName].Value).ToArray(); }
103      private set { this[TestNormalizedMeanSquaredErrorResultName].Value = new DoubleArray(value); }
104    }
105    public double[] TrainingDirectionalSymmetry {
106      get { return ((DoubleArray)this[TrainingDirectionalSymmetryResultName].Value).ToArray(); }
107      private set { this[TrainingDirectionalSymmetryResultName].Value = new DoubleArray(value); }
108    }
109    public double[] TestDirectionalSymmetry {
110      get { return ((DoubleArray)this[TestDirectionalSymmetryResultName].Value).ToArray(); }
111      private set { this[TestDirectionalSymmetryResultName].Value = new DoubleArray(value); }
112    }
113    public double[] TrainingWeightedDirectionalSymmetry {
114      get { return ((DoubleArray)this[TrainingWeightedDirectionalSymmetryResultName].Value).ToArray(); }
115      private set { this[TrainingWeightedDirectionalSymmetryResultName].Value = new DoubleArray(value); }
116    }
117    public double[] TestWeightedDirectionalSymmetry {
118      get { return ((DoubleArray)this[TestWeightedDirectionalSymmetryResultName].Value).ToArray(); }
119      private set { this[TestWeightedDirectionalSymmetryResultName].Value = new DoubleArray(value); }
120    }
121    public double[] TrainingTheilsUStatistic {
122      get { return ((DoubleArray)this[TrainingTheilsUStatisticResultName].Value).ToArray(); }
123      private set { this[TrainingTheilsUStatisticResultName].Value = new DoubleArray(value); }
124    }
125    public double[] TestTheilsUStatistic {
126      get { return ((DoubleArray)this[TestTheilsUStatisticResultName].Value).ToArray(); }
127      private set { this[TestTheilsUStatisticResultName].Value = new DoubleArray(value); }
128    }
129    #endregion
130
131    [StorableConstructor]
132    protected TimeSeriesPrognosisSolutionBase(bool deserializing) : base(deserializing) { }
133    protected TimeSeriesPrognosisSolutionBase(TimeSeriesPrognosisSolutionBase original, Cloner cloner)
134      : base(original, cloner) {
135    }
136    protected TimeSeriesPrognosisSolutionBase(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData)
137      : base(model, problemData) {
138      Add(new Result(TrainingMeanSquaredErrorResultName, "Mean of squared errors of the model on the training partition", new DoubleArray()));
139      Add(new Result(TestMeanSquaredErrorResultName, "Mean of squared errors of the model on the test partition", new DoubleArray()));
140      Add(new Result(TrainingMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the training partition", new DoubleArray()));
141      Add(new Result(TestMeanAbsoluteErrorResultName, "Mean of absolute errors of the model on the test partition", new DoubleArray()));
142      Add(new Result(TrainingSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition", new DoubleArray()));
143      Add(new Result(TestSquaredCorrelationResultName, "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition", new DoubleArray()));
144      Add(new Result(TrainingRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the training partition", new DoubleArray()));
145      Add(new Result(TestRelativeErrorResultName, "Average of the relative errors of the model output and the actual values on the test partition", new DoubleArray()));
146      Add(new Result(TrainingNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the training partition", new DoubleArray()));
147      Add(new Result(TestNormalizedMeanSquaredErrorResultName, "Normalized mean of squared errors of the model on the test partition", new DoubleArray()));
148      Add(new Result(TrainingDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the training partition", new DoubleArray()));
149      Add(new Result(TestDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the test partition", new DoubleArray()));
150      Add(new Result(TrainingWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the training partition", new DoubleArray()));
151      Add(new Result(TestWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the test partition", new DoubleArray()));
152      Add(new Result(TrainingTheilsUStatisticResultName, "The average Theil's U statistic of the forecasts of the model on the training partition", new DoubleArray()));
153      Add(new Result(TestTheilsUStatisticResultName, "The average Theil's U statistic of the forecasts of the model on the test partition", new DoubleArray()));
154    }
155
156    [StorableHook(HookType.AfterDeserialization)]
157    private void AfterDeserialization() {
158
159    }
160
161    protected void CalculateResults() {
162      OnlineCalculatorError errorState;
163      string[] targetVariables = ProblemData.TargetVariables.ToArray();
164      /*
165      double[] estimatedTrainingValues = PrognosedTrainingValues.ToArray(); // cache values
166      double[] originalTrainingValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
167      double[] estimatedTestValues = PrognosedTestValues.ToArray(); // cache values
168      double[] originalTestValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
169
170      double trainingMse = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
171      TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMse : double.NaN;
172      double testMse = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
173      TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMse : double.NaN;
174
175      double trainingMae = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
176      TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMae : double.NaN;
177      double testMae = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
178      TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMae : double.NaN;
179
180      double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
181      TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
182      double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
183      TestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
184
185      double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
186      TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
187      double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
188      TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
189
190      double trainingNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
191      TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNmse : double.NaN;
192      double testNmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
193      TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNmse : double.NaN;
194              */
195
196      //double[] trainingDs = new double[targetVariables.Length];
197      //double[] testDs = new double[targetVariables.Length];
198
199      //double[] trainingWds = new double[targetVariables.Length];
200      //double[] testWds = new double[targetVariables.Length];
201
202      //double[] trainingTheilsU = new double[targetVariables.Length];
203      //double[] testTheilsU = new double[targetVariables.Length];
204
205      var trainingDsCalculators = new OnlineDirectionalSymmetryCalculator[targetVariables.Length];
206      var testDsCalculators = new OnlineDirectionalSymmetryCalculator[targetVariables.Length];
207      var trainingWdsCalculators = new OnlineWeightedDirectionalSymmetryCalculator[targetVariables.Length];
208      var testWdsCalculators = new OnlineWeightedDirectionalSymmetryCalculator[targetVariables.Length];
209      var trainingTheilsUCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
210      var testTheilsUCalculators = new OnlineTheilsUStatisticCalculator[targetVariables.Length];
211      for (int i = 0; i < targetVariables.Length; i++) {
212        trainingDsCalculators[i] = new OnlineDirectionalSymmetryCalculator();
213        testDsCalculators[i] = new OnlineDirectionalSymmetryCalculator();
214        trainingWdsCalculators[i] = new OnlineWeightedDirectionalSymmetryCalculator();
215        testWdsCalculators[i] = new OnlineWeightedDirectionalSymmetryCalculator();
216        trainingTheilsUCalculators[i] = new OnlineTheilsUStatisticCalculator();
217        testTheilsUCalculators[i] = new OnlineTheilsUStatisticCalculator();
218      }
219
220      var allPrognosedTrainingValues = PrognosedTrainingValues.SelectMany(x => x).ToArray();
221      var allPrognosedTestValues = PrognosedTestValues.SelectMany(x => x).ToArray();
222      for (int t = 0; t < targetVariables.Length; t++) {
223        var actualTrainingValues = ProblemData.Dataset.GetDoubleValues(targetVariables[t], ProblemData.TrainingIndizes);
224        double startTrainingValue = ProblemData.Dataset.GetDoubleValue(targetVariables[t], ProblemData.TrainingIndizes.First() - 1);
225        var prognosedTrainingValues = allPrognosedTrainingValues.Skip(t).TakeEvery(targetVariables.Length);
226        trainingDsCalculators[t].Add(startTrainingValue, actualTrainingValues, prognosedTrainingValues);
227        trainingWdsCalculators[t].Add(startTrainingValue, actualTrainingValues, prognosedTrainingValues);
228        trainingTheilsUCalculators[t].Add(startTrainingValue, actualTrainingValues, prognosedTrainingValues);
229
230        var actualTestValues = ProblemData.Dataset.GetDoubleValues(targetVariables[t], ProblemData.TestIndizes);
231        double startTestValue = ProblemData.Dataset.GetDoubleValue(targetVariables[t], ProblemData.TestIndizes.First() - 1);
232        var prognosedTestValues = allPrognosedTestValues.Skip(t).TakeEvery(targetVariables.Length);
233        testDsCalculators[t].Add(startTestValue, actualTestValues, prognosedTestValues);
234        testWdsCalculators[t].Add(startTestValue, actualTestValues, prognosedTestValues);
235        testTheilsUCalculators[t].Add(startTestValue, actualTestValues, prognosedTestValues);
236      }
237
238      TrainingDirectionalSymmetry = trainingDsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : 0.0)
239        .ToArray();
240      TestDirectionalSymmetry = testDsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : 0.0)
241        .ToArray();
242      TrainingWeightedDirectionalSymmetry = trainingWdsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
243        .ToArray();
244      TestWeightedDirectionalSymmetry = testWdsCalculators.Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
245        .ToArray();
246      TrainingTheilsUStatistic = trainingDsCalculators
247        .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
248        .ToArray();
249      TestTheilsUStatistic = testTheilsUCalculators
250        .Select(c => c.ErrorState == OnlineCalculatorError.None ? c.Value : double.PositiveInfinity)
251        .ToArray();
252    }
253  }
254}
Note: See TracBrowser for help on using the repository browser.