[6802] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7183] | 22 | using System;
|
---|
[6802] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 31 | [StorableClass]
|
---|
[8458] | 32 | public abstract class TimeSeriesPrognosisSolutionBase : RegressionSolutionBase, ITimeSeriesPrognosisSolution {
|
---|
[8468] | 33 | #region result names
|
---|
| 34 | protected const string TrainingDirectionalSymmetryResultName = "Average directional symmetry (training)";
|
---|
| 35 | protected const string TestDirectionalSymmetryResultName = "Average directional symmetry (test)";
|
---|
| 36 | protected const string TrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)";
|
---|
| 37 | protected const string TestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)";
|
---|
| 38 | protected const string TrainingTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (training)";
|
---|
| 39 | protected const string TestTheilsUStatisticLastResultName = "Theil's U2 (AR1) (test)";
|
---|
| 40 | protected const string TrainingTheilsUStatisticMeanResultName = "Theil's U2 (mean) (training)";
|
---|
| 41 | protected const string TestTheilsUStatisticMeanResultName = "Theil's U2 (mean) (test)";
|
---|
| 42 | protected const string TrainingTheilsUStatisticMovingAverageResultName = "Theil's U2 (moving average) (training)";
|
---|
| 43 | protected const string TestTheilsUStatisticMovingAverageResultName = "Theil's U2 (moving average) (test)";
|
---|
[6802] | 44 |
|
---|
[8468] | 45 | protected const string PrognosisTrainingMeanSquaredErrorResultName = "Prognosis " + TrainingMeanSquaredErrorResultName;
|
---|
| 46 | protected const string PrognosisTestMeanSquaredErrorResultName = "Prognosis " + TestMeanSquaredErrorResultName;
|
---|
| 47 | protected const string PrognosisTrainingMeanAbsoluteErrorResultName = "Prognosis " + TrainingMeanAbsoluteErrorResultName;
|
---|
| 48 | protected const string PrognosisTestMeanAbsoluteErrorResultName = "Prognosis " + TestMeanAbsoluteErrorResultName;
|
---|
| 49 | protected const string PrognosisTrainingSquaredCorrelationResultName = "Prognosis " + TrainingSquaredCorrelationResultName;
|
---|
| 50 | protected const string PrognosisTestSquaredCorrelationResultName = "Prognosis " + TestSquaredCorrelationResultName;
|
---|
| 51 | protected const string PrognosisTrainingRelativeErrorResultName = "Prognosis " + TrainingRelativeErrorResultName;
|
---|
| 52 | protected const string PrognosisTestRelativeErrorResultName = "Prognosis " + TestRelativeErrorResultName;
|
---|
| 53 | protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultName = "Prognosis " + TrainingNormalizedMeanSquaredErrorResultName;
|
---|
| 54 | protected const string PrognosisTestNormalizedMeanSquaredErrorResultName = "Prognosis " + TestNormalizedMeanSquaredErrorResultName;
|
---|
| 55 | protected const string PrognosisTrainingMeanErrorResultName = "Prognosis " + TrainingMeanErrorResultName;
|
---|
| 56 | protected const string PrognosisTestMeanErrorResultName = "Prognosis " + TestMeanErrorResultName;
|
---|
| 57 |
|
---|
| 58 | protected const string PrognosisTrainingDirectionalSymmetryResultName = "Prognosis " + TrainingDirectionalSymmetryResultName;
|
---|
| 59 | protected const string PrognosisTestDirectionalSymmetryResultName = "Prognosis " + TestDirectionalSymmetryResultName;
|
---|
| 60 | protected const string PrognosisTrainingWeightedDirectionalSymmetryResultName = "Prognosis " + TrainingWeightedDirectionalSymmetryResultName;
|
---|
| 61 | protected const string PrognosisTestWeightedDirectionalSymmetryResultName = "Prognosis " + TestWeightedDirectionalSymmetryResultName;
|
---|
| 62 | protected const string PrognosisTrainingTheilsUStatisticAR1ResultName = "Prognosis " + TrainingTheilsUStatisticAR1ResultName;
|
---|
| 63 | protected const string PrognosisTestTheilsUStatisticAR1ResultName = "Prognosis " + TestTheilsUStatisticLastResultName;
|
---|
| 64 | protected const string PrognosisTrainingTheilsUStatisticMeanResultName = "Prognosis " + TrainingTheilsUStatisticMeanResultName;
|
---|
| 65 | protected const string PrognosisTestTheilsUStatisticMeanResultName = "Prognosis " + TestTheilsUStatisticMeanResultName;
|
---|
| 66 | protected const string PrognosisTrainingTheilsUStatisticMovingAverageResultName = "Prognosis " + TrainingTheilsUStatisticMovingAverageResultName;
|
---|
| 67 | protected const string PrognosisTestTheilsUStatisticMovingAverageResultName = "Prognosis " + TestTheilsUStatisticMovingAverageResultName;
|
---|
| 68 | #endregion
|
---|
| 69 |
|
---|
| 70 | #region result descriptions
|
---|
| 71 | protected const string TrainingDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the training partition";
|
---|
| 72 | protected const string TestDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the test partition";
|
---|
| 73 | protected const string TrainingWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the training partition";
|
---|
| 74 | protected const string TestWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the test partition";
|
---|
| 75 | protected const string TrainingTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the training partition";
|
---|
| 76 | protected const string TestTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the test partition";
|
---|
| 77 | protected const string TrainingTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean model) of the forecasts of the model on the training partition";
|
---|
| 78 | protected const string TestTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition";
|
---|
| 79 | protected const string TrainingTheilsUStatisticMovingAverageResultDescription = "The Theil's U statistic (reference: moving average model) of the forecasts of the model on the training partition";
|
---|
| 80 | protected const string TestTheilsUStatisticMovingAverageResultDescription = "The Theil's U statistic (reference: moving average model) of the forecasts of the model on the test partition";
|
---|
| 81 |
|
---|
| 82 | protected const string PrognosisTrainingMeanSquaredErrorResultDescription = TrainingMeanSquaredErrorResultDescription;
|
---|
| 83 | protected const string PrognosisTestMeanSquaredErrorResultDescription = TestMeanSquaredErrorResultDescription;
|
---|
| 84 | protected const string PrognosisTrainingMeanAbsoluteErrorResultDescription = TrainingMeanAbsoluteErrorResultDescription;
|
---|
| 85 | protected const string PrognosisTestMeanAbsoluteErrorResultDescription = TestMeanAbsoluteErrorResultDescription;
|
---|
| 86 | protected const string PrognosisTrainingSquaredCorrelationResultDescription = TrainingSquaredCorrelationResultDescription;
|
---|
| 87 | protected const string PrognosisTestSquaredCorrelationResultDescription = TestSquaredCorrelationResultDescription;
|
---|
| 88 | protected const string PrognosisTrainingRelativeErrorResultDescription = TrainingRelativeErrorResultDescription;
|
---|
| 89 | protected const string PrognosisTestRelativeErrorResultDescription = TestRelativeErrorResultDescription;
|
---|
| 90 | protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultDescription = TrainingNormalizedMeanSquaredErrorResultDescription;
|
---|
| 91 | protected const string PrognosisTestNormalizedMeanSquaredErrorResultDescription = TestNormalizedMeanSquaredErrorResultDescription;
|
---|
| 92 | protected const string PrognosisTrainingMeanErrorResultDescription = TrainingMeanErrorResultDescription;
|
---|
| 93 | protected const string PrognosisTestMeanErrorResultDescription = TestMeanErrorResultDescription;
|
---|
| 94 |
|
---|
| 95 | protected const string PrognosisTrainingDirectionalSymmetryResultDescription = TrainingDirectionalSymmetryResultDescription;
|
---|
| 96 | protected const string PrognosisTestDirectionalSymmetryResultDescription = TestDirectionalSymmetryResultDescription;
|
---|
| 97 | protected const string PrognosisTrainingWeightedDirectionalSymmetryResultDescription = TrainingWeightedDirectionalSymmetryResultDescription;
|
---|
| 98 | protected const string PrognosisTestWeightedDirectionalSymmetryResultDescription = TestWeightedDirectionalSymmetryResultDescription;
|
---|
| 99 | protected const string PrognosisTrainingTheilsUStatisticAR1ResultDescription = TrainingTheilsUStatisticAR1ResultDescription;
|
---|
| 100 | protected const string PrognosisTestTheilsUStatisticAR1ResultDescription = TestTheilsUStatisticAR1ResultDescription;
|
---|
| 101 | protected const string PrognosisTrainingTheilsUStatisticMeanResultDescription = TrainingTheilsUStatisticMeanResultDescription;
|
---|
| 102 | protected const string PrognosisTestTheilsUStatisticMeanResultDescription = TestTheilsUStatisticMeanResultDescription;
|
---|
| 103 | protected const string PrognosisTrainingTheilsUStatisticMovingAverageResultDescription = TrainingTheilsUStatisticMovingAverageResultDescription;
|
---|
| 104 | protected const string PrognosisTestTheilsUStatisticMovingAverageResultDescription = TestTheilsUStatisticMovingAverageResultDescription;
|
---|
| 105 | #endregion
|
---|
| 106 |
|
---|
[6802] | 107 | public new ITimeSeriesPrognosisModel Model {
|
---|
| 108 | get { return (ITimeSeriesPrognosisModel)base.Model; }
|
---|
| 109 | protected set { base.Model = value; }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | public new ITimeSeriesPrognosisProblemData ProblemData {
|
---|
| 113 | get { return (ITimeSeriesPrognosisProblemData)base.ProblemData; }
|
---|
| 114 | set { base.ProblemData = value; }
|
---|
| 115 | }
|
---|
| 116 |
|
---|
[8010] | 117 | public abstract IEnumerable<IEnumerable<double>> GetPrognosedValues(IEnumerable<int> rows, IEnumerable<int> horizon);
|
---|
[6802] | 118 |
|
---|
| 119 | #region Results
|
---|
[7989] | 120 | public double TrainingDirectionalSymmetry {
|
---|
| 121 | get { return ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value; }
|
---|
| 122 | private set { ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 123 | }
|
---|
[7989] | 124 | public double TestDirectionalSymmetry {
|
---|
| 125 | get { return ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value; }
|
---|
| 126 | private set { ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 127 | }
|
---|
[7989] | 128 | public double TrainingWeightedDirectionalSymmetry {
|
---|
| 129 | get { return ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value; }
|
---|
| 130 | private set { ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 131 | }
|
---|
[7989] | 132 | public double TestWeightedDirectionalSymmetry {
|
---|
| 133 | get { return ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value; }
|
---|
| 134 | private set { ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 135 | }
|
---|
[8468] | 136 | public double TrainingTheilsUStatisticAR1 {
|
---|
| 137 | get { return ((DoubleValue)this[TrainingTheilsUStatisticAR1ResultName].Value).Value; }
|
---|
| 138 | private set { ((DoubleValue)this[TrainingTheilsUStatisticAR1ResultName].Value).Value = value; }
|
---|
[6802] | 139 | }
|
---|
[8468] | 140 | public double TestTheilsUStatisticAR1 {
|
---|
[7989] | 141 | get { return ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value; }
|
---|
| 142 | private set { ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value = value; }
|
---|
[6802] | 143 | }
|
---|
[7989] | 144 | public double TrainingTheilsUStatisticMean {
|
---|
| 145 | get { return ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value; }
|
---|
| 146 | private set { ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value = value; }
|
---|
[7160] | 147 | }
|
---|
[7989] | 148 | public double TestTheilsUStatisticMean {
|
---|
| 149 | get { return ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value; }
|
---|
| 150 | private set { ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value = value; }
|
---|
[7160] | 151 | }
|
---|
[7989] | 152 | public double TrainingTheilsUStatisticMovingAverage {
|
---|
[8468] | 153 | get { return ((DoubleValue)this[TrainingTheilsUStatisticMovingAverageResultName].Value).Value; }
|
---|
| 154 | private set { ((DoubleValue)this[TrainingTheilsUStatisticMovingAverageResultName].Value).Value = value; }
|
---|
[7160] | 155 | }
|
---|
[7989] | 156 | public double TestTheilsUStatisticMovingAverage {
|
---|
[8468] | 157 | get { return ((DoubleValue)this[TestTheilsUStatisticMovingAverageResultName].Value).Value; }
|
---|
| 158 | private set { ((DoubleValue)this[TestTheilsUStatisticMovingAverageResultName].Value).Value = value; }
|
---|
[7160] | 159 | }
|
---|
[8468] | 160 |
|
---|
| 161 | //prognosis results for different horizons
|
---|
| 162 | public double PrognosisTrainingMeanSquaredError {
|
---|
| 163 | get {
|
---|
| 164 | if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 165 | return ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value;
|
---|
| 166 | }
|
---|
| 167 | private set {
|
---|
| 168 | if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingMeanSquaredErrorResultName, PrognosisTrainingMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 169 | ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | public double PrognosisTestMeanSquaredError {
|
---|
| 174 | get {
|
---|
| 175 | if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 176 | return ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value;
|
---|
| 177 | }
|
---|
| 178 | private set {
|
---|
| 179 | if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) Add(new Result(PrognosisTestMeanSquaredErrorResultName, PrognosisTestMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 180 | ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 181 | }
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | public double PrognosisTrainingMeanAbsoluteError {
|
---|
| 185 | get {
|
---|
| 186 | if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) return double.NaN;
|
---|
| 187 | return ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value;
|
---|
| 188 | }
|
---|
| 189 | private set {
|
---|
| 190 | if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTrainingMeanAbsoluteErrorResultName, PrognosisTrainingMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
| 191 | ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value = value;
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | public double PrognosisTestMeanAbsoluteError {
|
---|
| 196 | get {
|
---|
| 197 | if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) return double.NaN;
|
---|
| 198 | return ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value;
|
---|
| 199 | }
|
---|
| 200 | private set {
|
---|
| 201 | if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTestMeanAbsoluteErrorResultName, PrognosisTestMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
| 202 | ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value = value;
|
---|
| 203 | }
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | public double PrognosisTrainingRSquared {
|
---|
| 207 | get {
|
---|
| 208 | if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) return double.NaN;
|
---|
| 209 | return ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value;
|
---|
| 210 | }
|
---|
| 211 | private set {
|
---|
| 212 | if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) Add(new Result(PrognosisTrainingSquaredCorrelationResultName, PrognosisTrainingSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
| 213 | ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value = value;
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | public double PrognosisTestRSquared {
|
---|
| 218 | get {
|
---|
| 219 | if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) return double.NaN;
|
---|
| 220 | return ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value;
|
---|
| 221 | }
|
---|
| 222 | private set {
|
---|
| 223 | if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) Add(new Result(PrognosisTestSquaredCorrelationResultName, PrognosisTestSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
| 224 | ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value = value;
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | public double PrognosisTrainingRelativeError {
|
---|
| 229 | get {
|
---|
| 230 | if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) return double.NaN;
|
---|
| 231 | return ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value;
|
---|
| 232 | }
|
---|
| 233 | private set {
|
---|
| 234 | if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) Add(new Result(PrognosisTrainingRelativeErrorResultName, PrognosisTrainingRelativeErrorResultDescription, new DoubleValue()));
|
---|
| 235 | ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value = value;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | public double PrognosisTestRelativeError {
|
---|
| 240 | get {
|
---|
| 241 | if (!ContainsKey(PrognosisTestRelativeErrorResultName)) return double.NaN;
|
---|
| 242 | return ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value;
|
---|
| 243 | }
|
---|
| 244 | private set {
|
---|
| 245 | if (!ContainsKey(PrognosisTestRelativeErrorResultName)) Add(new Result(PrognosisTestRelativeErrorResultName, PrognosisTestRelativeErrorResultDescription, new DoubleValue()));
|
---|
| 246 | ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value = value;
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | public double PrognosisTrainingNormalizedMeanSquaredError {
|
---|
| 251 | get {
|
---|
| 252 | if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 253 | return ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value;
|
---|
| 254 | }
|
---|
| 255 | private set {
|
---|
| 256 | if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingNormalizedMeanSquaredErrorResultName, PrognosisTrainingNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 257 | ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 258 | }
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | public double PrognosisTestNormalizedMeanSquaredError {
|
---|
| 262 | get {
|
---|
| 263 | if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 264 | return ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value;
|
---|
| 265 | }
|
---|
| 266 | private set {
|
---|
| 267 | if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTestNormalizedMeanSquaredErrorResultName, PrognosisTestNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 268 | ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 269 | }
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | public double PrognosisTrainingMeanError {
|
---|
| 273 | get {
|
---|
| 274 | if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) return double.NaN;
|
---|
| 275 | return ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value;
|
---|
| 276 | }
|
---|
| 277 | private set {
|
---|
| 278 | if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) Add(new Result(PrognosisTrainingMeanErrorResultName, PrognosisTrainingMeanErrorResultDescription, new DoubleValue()));
|
---|
| 279 | ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value = value;
|
---|
| 280 | }
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | public double PrognosisTestMeanError {
|
---|
| 284 | get {
|
---|
| 285 | if (!ContainsKey(PrognosisTestMeanErrorResultName)) return double.NaN;
|
---|
| 286 | return ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value;
|
---|
| 287 | }
|
---|
| 288 | private set {
|
---|
| 289 | if (!ContainsKey(PrognosisTestMeanErrorResultName)) Add(new Result(PrognosisTestMeanErrorResultName, PrognosisTestMeanErrorResultDescription, new DoubleValue()));
|
---|
| 290 | ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value = value;
|
---|
| 291 | }
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 |
|
---|
| 295 | public double PrognosisTrainingDirectionalSymmetry {
|
---|
| 296 | get {
|
---|
| 297 | if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 298 | return ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value;
|
---|
| 299 | }
|
---|
| 300 | private set {
|
---|
| 301 | if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingDirectionalSymmetryResultName, PrognosisTrainingDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 302 | ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 303 | }
|
---|
| 304 | }
|
---|
| 305 | public double PrognosisTestDirectionalSymmetry {
|
---|
| 306 | get {
|
---|
| 307 | if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 308 | return ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value;
|
---|
| 309 | }
|
---|
| 310 | private set {
|
---|
| 311 | if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) Add(new Result(PrognosisTestDirectionalSymmetryResultName, PrognosisTestDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 312 | ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 313 | }
|
---|
| 314 | }
|
---|
| 315 | public double PrognosisTrainingWeightedDirectionalSymmetry {
|
---|
| 316 | get {
|
---|
| 317 | if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 318 | return ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value;
|
---|
| 319 | }
|
---|
| 320 | private set {
|
---|
| 321 | if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingWeightedDirectionalSymmetryResultName, PrognosisTrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 322 | ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 323 | }
|
---|
| 324 | }
|
---|
| 325 | public double PrognosisTestWeightedDirectionalSymmetry {
|
---|
| 326 | get {
|
---|
| 327 | if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 328 | return ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value;
|
---|
| 329 | }
|
---|
| 330 | private set {
|
---|
| 331 | if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTestWeightedDirectionalSymmetryResultName, PrognosisTestWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 332 | ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 | public double PrognosisTrainingTheilsUStatisticAR1 {
|
---|
| 336 | get {
|
---|
| 337 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) return double.NaN;
|
---|
| 338 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value;
|
---|
| 339 | }
|
---|
| 340 | private set {
|
---|
| 341 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticAR1ResultName, PrognosisTrainingTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
| 342 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value = value;
|
---|
| 343 | }
|
---|
| 344 | }
|
---|
| 345 | public double PrognosisTestTheilsUStatisticAR1 {
|
---|
| 346 | get {
|
---|
| 347 | if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) return double.NaN;
|
---|
| 348 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value;
|
---|
| 349 | }
|
---|
| 350 | private set {
|
---|
| 351 | if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTestTheilsUStatisticAR1ResultName, PrognosisTestTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
| 352 | ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value = value;
|
---|
| 353 | }
|
---|
| 354 | }
|
---|
| 355 | public double PrognosisTrainingTheilsUStatisticMean {
|
---|
| 356 | get {
|
---|
| 357 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) return double.NaN;
|
---|
| 358 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value;
|
---|
| 359 | }
|
---|
| 360 | private set {
|
---|
| 361 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMeanResultName, PrognosisTrainingTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
| 362 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value = value;
|
---|
| 363 | }
|
---|
| 364 | }
|
---|
| 365 | public double PrognosisTestTheilsUStatisticMean {
|
---|
| 366 | get {
|
---|
| 367 | if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) return double.NaN;
|
---|
| 368 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value;
|
---|
| 369 | }
|
---|
| 370 | private set {
|
---|
| 371 | if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTestTheilsUStatisticMeanResultName, PrognosisTestTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
| 372 | ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value = value;
|
---|
| 373 | }
|
---|
| 374 | }
|
---|
| 375 | public double PrognosisTrainingTheilsUStatisticMovingAverage {
|
---|
| 376 | get {
|
---|
| 377 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMovingAverageResultName)) return double.NaN;
|
---|
| 378 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMovingAverageResultName].Value).Value;
|
---|
| 379 | }
|
---|
| 380 | private set {
|
---|
| 381 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMovingAverageResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMovingAverageResultName, PrognosisTrainingTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
| 382 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMovingAverageResultName].Value).Value = value;
|
---|
| 383 | }
|
---|
| 384 | }
|
---|
| 385 | public double PrognosisTestTheilsUStatisticMovingAverage {
|
---|
| 386 | get {
|
---|
| 387 | if (!ContainsKey(PrognosisTestTheilsUStatisticMovingAverageResultName)) return double.NaN;
|
---|
| 388 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticMovingAverageResultName].Value).Value;
|
---|
| 389 | }
|
---|
| 390 | private set {
|
---|
| 391 | if (!ContainsKey(PrognosisTestTheilsUStatisticMovingAverageResultName)) Add(new Result(PrognosisTestTheilsUStatisticMovingAverageResultName, PrognosisTestTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
| 392 | ((DoubleValue)this[PrognosisTestTheilsUStatisticMovingAverageResultName].Value).Value = value;
|
---|
| 393 | }
|
---|
| 394 | }
|
---|
[6802] | 395 | #endregion
|
---|
| 396 |
|
---|
[8458] | 397 | public override IEnumerable<double> EstimatedValues {
|
---|
| 398 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
| 399 | }
|
---|
| 400 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
| 401 | get { return GetEstimatedValues(ProblemData.TrainingIndices); }
|
---|
| 402 | }
|
---|
| 403 | public override IEnumerable<double> EstimatedTestValues {
|
---|
| 404 | get { return GetEstimatedValues(ProblemData.TestIndices); }
|
---|
| 405 | }
|
---|
| 406 | public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
| 407 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
| 408 | }
|
---|
| 409 |
|
---|
[6802] | 410 | [StorableConstructor]
|
---|
| 411 | protected TimeSeriesPrognosisSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
[8468] | 412 | protected TimeSeriesPrognosisSolutionBase(TimeSeriesPrognosisSolutionBase original, Cloner cloner) : base(original, cloner) { }
|
---|
[6802] | 413 | protected TimeSeriesPrognosisSolutionBase(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData)
|
---|
| 414 | : base(model, problemData) {
|
---|
[8468] | 415 | Add(new Result(TrainingDirectionalSymmetryResultName, TrainingDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 416 | Add(new Result(TestDirectionalSymmetryResultName, TestDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 417 | Add(new Result(TrainingWeightedDirectionalSymmetryResultName, TrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 418 | Add(new Result(TestWeightedDirectionalSymmetryResultName, TestWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 419 | Add(new Result(TrainingTheilsUStatisticAR1ResultName, TrainingTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
| 420 | Add(new Result(TestTheilsUStatisticLastResultName, TestTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
| 421 | Add(new Result(TrainingTheilsUStatisticMeanResultName, TrainingTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
| 422 | Add(new Result(TestTheilsUStatisticMeanResultName, TestTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
| 423 | Add(new Result(TrainingTheilsUStatisticMovingAverageResultName, TrainingTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
| 424 | Add(new Result(TestTheilsUStatisticMovingAverageResultName, TestTheilsUStatisticMovingAverageResultDescription, new DoubleValue()));
|
---|
[6802] | 425 | }
|
---|
| 426 |
|
---|
[8458] | 427 | protected override void RecalculateResults() {
|
---|
| 428 | base.RecalculateResults();
|
---|
| 429 | CalculateTimeSeriesResults();
|
---|
[8468] | 430 | CalculateTimeSeriesResults(ProblemData.TrainingHorizon, ProblemData.TestHorizon);
|
---|
[8458] | 431 | }
|
---|
[6802] | 432 |
|
---|
[8458] | 433 | private void CalculateTimeSeriesResults() {
|
---|
[8010] | 434 | OnlineCalculatorError errorState;
|
---|
[8430] | 435 | double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
| 436 | var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean);
|
---|
[6802] | 437 |
|
---|
[8010] | 438 | double alpha, beta;
|
---|
[8430] | 439 | IEnumerable<double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 440 | OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
[8468] | 441 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha);
|
---|
[7183] | 442 |
|
---|
[8010] | 443 | //MA model
|
---|
[8468] | 444 | const int movingAverageWindowSize = 10;
|
---|
| 445 | var movingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable);
|
---|
[7183] | 446 |
|
---|
[8010] | 447 | #region Calculate training quality measures
|
---|
[8468] | 448 | IEnumerable<double> trainingTargetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
|
---|
| 449 | IEnumerable<double> trainingEstimatedValues = EstimatedTrainingValues.ToList();
|
---|
| 450 | IEnumerable<double> trainingMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
|
---|
| 451 | IEnumerable<double> trainingAR1ModelPredictions = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
|
---|
| 452 | IEnumerable<double> trainingMovingAverageModelPredictions = movingAverageModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
|
---|
[7989] | 453 |
|
---|
[8468] | 454 | TrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
[8010] | 455 | TrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingDirectionalSymmetry : 0.0;
|
---|
[8468] | 456 | TrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
[8010] | 457 | TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingWeightedDirectionalSymmetry : 0.0;
|
---|
[8468] | 458 | TrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 459 | TrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
| 460 | TrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 461 | TrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMean : double.PositiveInfinity;
|
---|
| 462 | TrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 463 | TrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
[8010] | 464 | #endregion
|
---|
[7989] | 465 |
|
---|
[8468] | 466 | #region Calculate test quality measures
|
---|
| 467 | IEnumerable<double> testTargetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToList();
|
---|
| 468 | IEnumerable<double> testEstimatedValues = EstimatedTestValues.ToList();
|
---|
| 469 | IEnumerable<double> testMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
|
---|
| 470 | IEnumerable<double> testAR1ModelPredictions = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
|
---|
| 471 | IEnumerable<double> testMovingAverageModelPredictions = movingAverageModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
|
---|
[7989] | 472 |
|
---|
[8468] | 473 | TestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
|
---|
[8010] | 474 | TestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestDirectionalSymmetry : 0.0;
|
---|
[8468] | 475 | TestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
|
---|
[8010] | 476 | TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestWeightedDirectionalSymmetry : 0.0;
|
---|
[8468] | 477 | TestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
|
---|
| 478 | TestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
| 479 | TestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
|
---|
| 480 | TestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMean : double.PositiveInfinity;
|
---|
| 481 | TestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState);
|
---|
| 482 | TestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
[8430] | 483 | #endregion
|
---|
[6802] | 484 | }
|
---|
[8468] | 485 |
|
---|
| 486 | private void CalculateTimeSeriesResults(int trainingHorizon, int testHorizon) {
|
---|
| 487 | OnlineCalculatorError errorState;
|
---|
| 488 | //mean model
|
---|
| 489 | double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
| 490 | var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean);
|
---|
| 491 |
|
---|
| 492 | //AR1 model
|
---|
| 493 | double alpha, beta;
|
---|
| 494 | IEnumerable<double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 495 | OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
| 496 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha);
|
---|
| 497 |
|
---|
| 498 | //MA model
|
---|
| 499 | const int movingAverageWindowSize = 10;
|
---|
| 500 | var MovingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable);
|
---|
| 501 |
|
---|
| 502 | #region Calculate training quality measures
|
---|
| 503 | if (trainingHorizon != 1) {
|
---|
| 504 | var trainingHorizions = ProblemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, ProblemData.TrainingPartition.End - r)).ToList();
|
---|
| 505 | IEnumerable<IEnumerable<double>> trainingTargetValues = ProblemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList();
|
---|
| 506 | IEnumerable<IEnumerable<double>> trainingEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 507 | IEnumerable<IEnumerable<double>> trainingMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 508 | IEnumerable<IEnumerable<double>> trainingAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 509 | IEnumerable<IEnumerable<double>> trainingMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 510 |
|
---|
| 511 | IEnumerable<double> originalTrainingValues = trainingTargetValues.SelectMany(x => x).ToList();
|
---|
| 512 | IEnumerable<double> estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList();
|
---|
| 513 |
|
---|
| 514 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 515 | PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
| 516 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 517 | PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
| 518 | double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 519 | PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN;
|
---|
| 520 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 521 | PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
| 522 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 523 | PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
| 524 | double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 525 | PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;
|
---|
| 526 |
|
---|
| 527 | PrognosisTrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
| 528 | PrognosisTrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0;
|
---|
| 529 | PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
| 530 | PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0;
|
---|
| 531 | PrognosisTrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 532 | PrognosisTrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
| 533 | PrognosisTrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 534 | PrognosisTrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity;
|
---|
| 535 | PrognosisTrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 536 | PrognosisTrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
| 537 | }
|
---|
| 538 |
|
---|
| 539 | #endregion
|
---|
| 540 |
|
---|
| 541 | #region Calculate test quality measures
|
---|
| 542 | if (testHorizon != 1) {
|
---|
| 543 | var testHorizions = ProblemData.TestIndices.Select(r => Math.Min(testHorizon, ProblemData.TestPartition.End - r)).ToList();
|
---|
| 544 | IEnumerable<IEnumerable<double>> testTargetValues = ProblemData.TestIndices.Zip(testHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList();
|
---|
| 545 | IEnumerable<IEnumerable<double>> testEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
| 546 | IEnumerable<double> testStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 547 | IEnumerable<IEnumerable<double>> testMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
| 548 | IEnumerable<IEnumerable<double>> testAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
| 549 | IEnumerable<IEnumerable<double>> testMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
| 550 |
|
---|
| 551 | IEnumerable<double> originalTestValues = testTargetValues.SelectMany(x => x).ToList();
|
---|
| 552 | IEnumerable<double> estimatedTestValues = testEstimatedValues.SelectMany(x => x).ToList();
|
---|
| 553 |
|
---|
| 554 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 555 | PrognosisTestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
| 556 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 557 | PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
| 558 | double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 559 | PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN;
|
---|
| 560 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 561 | PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
| 562 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 563 | PrognosisTestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
| 564 | double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 565 | PrognosisTestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN;
|
---|
| 566 |
|
---|
| 567 | PrognosisTestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
| 568 | PrognosisTestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestDirectionalSymmetry : 0.0;
|
---|
| 569 | PrognosisTestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
| 570 | PrognosisTestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestWeightedDirectionalSymmetry : 0.0;
|
---|
| 571 | PrognosisTestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
|
---|
| 572 | PrognosisTestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
| 573 | PrognosisTestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
|
---|
| 574 | PrognosisTestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMean : double.PositiveInfinity;
|
---|
| 575 | PrognosisTestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState);
|
---|
| 576 | PrognosisTestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMovingAverage : double.PositiveInfinity;
|
---|
| 577 | }
|
---|
| 578 |
|
---|
| 579 | #endregion
|
---|
| 580 | }
|
---|
[6802] | 581 | }
|
---|
| 582 | }
|
---|