[6802] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7183] | 22 | using System;
|
---|
[6802] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 31 | [StorableClass]
|
---|
[8458] | 32 | public abstract class TimeSeriesPrognosisSolutionBase : RegressionSolutionBase, ITimeSeriesPrognosisSolution {
|
---|
[7099] | 33 | private const string TrainingDirectionalSymmetryResultName = "Average directional symmetry (training)";
|
---|
| 34 | private const string TestDirectionalSymmetryResultName = "Average directional symmetry (test)";
|
---|
| 35 | private const string TrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)";
|
---|
| 36 | private const string TestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)";
|
---|
[7160] | 37 | private const string TrainingTheilsUStatisticLastResultName = "Average Theil's U (last) (training)";
|
---|
| 38 | private const string TestTheilsUStatisticLastResultName = "Average Theil's U (last) (test)";
|
---|
| 39 | private const string TrainingTheilsUStatisticMeanResultName = "Average Theil's U (mean) (training)";
|
---|
| 40 | private const string TestTheilsUStatisticMeanResultName = "Average Theil's U (mean) (test)";
|
---|
[7194] | 41 | private const string TrainingTheilsUStatisticMaResultName = "Average Theil's U (moving average) (training)";
|
---|
| 42 | private const string TestTheilsUStatisticMaResultName = "Average Theil's U (moving average) (test)";
|
---|
[6802] | 43 |
|
---|
| 44 | public new ITimeSeriesPrognosisModel Model {
|
---|
| 45 | get { return (ITimeSeriesPrognosisModel)base.Model; }
|
---|
| 46 | protected set { base.Model = value; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public new ITimeSeriesPrognosisProblemData ProblemData {
|
---|
| 50 | get { return (ITimeSeriesPrognosisProblemData)base.ProblemData; }
|
---|
| 51 | set { base.ProblemData = value; }
|
---|
| 52 | }
|
---|
| 53 |
|
---|
[7160] | 54 | [Storable]
|
---|
| 55 | private int horizon;
|
---|
| 56 | public int Horizon {
|
---|
| 57 | get { return horizon; }
|
---|
| 58 | set {
|
---|
| 59 | if (horizon != value) {
|
---|
| 60 | horizon = value;
|
---|
| 61 | RecalculateResults();
|
---|
| 62 | }
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[8010] | 66 | public abstract IEnumerable<IEnumerable<double>> GetPrognosedValues(IEnumerable<int> rows, IEnumerable<int> horizon);
|
---|
[6802] | 67 |
|
---|
| 68 | #region Results
|
---|
[7989] | 69 | public double TrainingDirectionalSymmetry {
|
---|
| 70 | get { return ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value; }
|
---|
| 71 | private set { ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 72 | }
|
---|
[7989] | 73 | public double TestDirectionalSymmetry {
|
---|
| 74 | get { return ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value; }
|
---|
| 75 | private set { ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 76 | }
|
---|
[7989] | 77 | public double TrainingWeightedDirectionalSymmetry {
|
---|
| 78 | get { return ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value; }
|
---|
| 79 | private set { ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 80 | }
|
---|
[7989] | 81 | public double TestWeightedDirectionalSymmetry {
|
---|
| 82 | get { return ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value; }
|
---|
| 83 | private set { ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value = value; }
|
---|
[6802] | 84 | }
|
---|
[7989] | 85 | public double TrainingTheilsUStatisticLast {
|
---|
| 86 | get { return ((DoubleValue)this[TrainingTheilsUStatisticLastResultName].Value).Value; }
|
---|
| 87 | private set { ((DoubleValue)this[TrainingTheilsUStatisticLastResultName].Value).Value = value; }
|
---|
[6802] | 88 | }
|
---|
[7989] | 89 | public double TestTheilsUStatisticLast {
|
---|
| 90 | get { return ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value; }
|
---|
| 91 | private set { ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value = value; }
|
---|
[6802] | 92 | }
|
---|
[7989] | 93 | public double TrainingTheilsUStatisticMean {
|
---|
| 94 | get { return ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value; }
|
---|
| 95 | private set { ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value = value; }
|
---|
[7160] | 96 | }
|
---|
[7989] | 97 | public double TestTheilsUStatisticMean {
|
---|
| 98 | get { return ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value; }
|
---|
| 99 | private set { ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value = value; }
|
---|
[7160] | 100 | }
|
---|
[7989] | 101 | public double TrainingTheilsUStatisticMovingAverage {
|
---|
| 102 | get { return ((DoubleValue)this[TrainingTheilsUStatisticMaResultName].Value).Value; }
|
---|
| 103 | private set { ((DoubleValue)this[TrainingTheilsUStatisticMaResultName].Value).Value = value; }
|
---|
[7160] | 104 | }
|
---|
[7989] | 105 | public double TestTheilsUStatisticMovingAverage {
|
---|
| 106 | get { return ((DoubleValue)this[TestTheilsUStatisticMaResultName].Value).Value; }
|
---|
| 107 | private set { ((DoubleValue)this[TestTheilsUStatisticMaResultName].Value).Value = value; }
|
---|
[7160] | 108 | }
|
---|
[6802] | 109 | #endregion
|
---|
| 110 |
|
---|
[8458] | 111 | public override IEnumerable<double> EstimatedValues {
|
---|
| 112 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
| 113 | }
|
---|
| 114 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
| 115 | get { return GetEstimatedValues(ProblemData.TrainingIndices); }
|
---|
| 116 | }
|
---|
| 117 | public override IEnumerable<double> EstimatedTestValues {
|
---|
| 118 | get { return GetEstimatedValues(ProblemData.TestIndices); }
|
---|
| 119 | }
|
---|
| 120 | public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
| 121 | return Model.GetEstimatedValues(ProblemData.Dataset, rows);
|
---|
| 122 | }
|
---|
| 123 |
|
---|
[6802] | 124 | [StorableConstructor]
|
---|
| 125 | protected TimeSeriesPrognosisSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
| 126 | protected TimeSeriesPrognosisSolutionBase(TimeSeriesPrognosisSolutionBase original, Cloner cloner)
|
---|
| 127 | : base(original, cloner) {
|
---|
[7160] | 128 | this.horizon = original.horizon;
|
---|
[6802] | 129 | }
|
---|
| 130 | protected TimeSeriesPrognosisSolutionBase(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData)
|
---|
| 131 | : base(model, problemData) {
|
---|
[7989] | 132 | Add(new Result(TrainingDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the training partition", new DoubleValue()));
|
---|
| 133 | Add(new Result(TestDirectionalSymmetryResultName, "The average directional symmetry of the forecasts of the model on the test partition", new DoubleValue()));
|
---|
| 134 | Add(new Result(TrainingWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the training partition", new DoubleValue()));
|
---|
| 135 | Add(new Result(TestWeightedDirectionalSymmetryResultName, "The average weighted directional symmetry of the forecasts of the model on the test partition", new DoubleValue()));
|
---|
| 136 | Add(new Result(TrainingTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the training partition", new DoubleValue()));
|
---|
| 137 | Add(new Result(TestTheilsUStatisticLastResultName, "The average Theil's U statistic (reference: previous value) of the forecasts of the model on the test partition", new DoubleValue()));
|
---|
| 138 | Add(new Result(TrainingTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the training partition", new DoubleValue()));
|
---|
| 139 | Add(new Result(TestTheilsUStatisticMeanResultName, "The average Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition", new DoubleValue()));
|
---|
| 140 | Add(new Result(TrainingTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the training partition", new DoubleValue()));
|
---|
| 141 | Add(new Result(TestTheilsUStatisticMaResultName, "The average Theil's U statistic (reference: moving average) of the forecasts of the model on the test partition", new DoubleValue()));
|
---|
[7160] | 142 | horizon = 1;
|
---|
[6802] | 143 | }
|
---|
| 144 |
|
---|
[8458] | 145 | protected override void RecalculateResults() {
|
---|
| 146 | base.RecalculateResults();
|
---|
| 147 | CalculateTimeSeriesResults();
|
---|
| 148 | }
|
---|
[6802] | 149 |
|
---|
[8458] | 150 | private void CalculateTimeSeriesResults() {
|
---|
[8010] | 151 | OnlineCalculatorError errorState;
|
---|
| 152 | //mean model
|
---|
[8430] | 153 | double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average();
|
---|
| 154 | var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean);
|
---|
[6802] | 155 |
|
---|
[8010] | 156 | //AR1 model
|
---|
| 157 | double alpha, beta;
|
---|
[8430] | 158 | IEnumerable<double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 159 | OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
[8010] | 160 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(alpha, beta, ProblemData.TargetVariable);
|
---|
[7183] | 161 |
|
---|
[8010] | 162 | //MA model
|
---|
| 163 | int movingAverageWindowSize = 10 + horizon;
|
---|
| 164 | var MovingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable);
|
---|
[7183] | 165 |
|
---|
[8010] | 166 | #region Calculate training quality measures
|
---|
[8430] | 167 | var trainingHorizions = ProblemData.TrainingIndices.Select(r => Math.Min(horizon, ProblemData.TrainingPartition.End - r)).ToList();
|
---|
| 168 | IEnumerable<IEnumerable<double>> trainingTargetValues = ProblemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList();
|
---|
| 169 | IEnumerable<IEnumerable<double>> trainingEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 170 | IEnumerable<IEnumerable<double>> trainingMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions);
|
---|
| 171 | IEnumerable<IEnumerable<double>> trainingAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions);
|
---|
| 172 | IEnumerable<IEnumerable<double>> trainingMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions);
|
---|
[7989] | 173 |
|
---|
[8010] | 174 | TrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
| 175 | TrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingDirectionalSymmetry : 0.0;
|
---|
| 176 | TrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
| 177 | TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingWeightedDirectionalSymmetry : 0.0;
|
---|
| 178 | TrainingTheilsUStatisticLast = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 179 | TrainingTheilsUStatisticLast = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticLast : double.PositiveInfinity; ;
|
---|
| 180 | TrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 181 | TrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMean : double.PositiveInfinity; ;
|
---|
| 182 | TrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 183 | TrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMovingAverage : double.PositiveInfinity; ; ;
|
---|
| 184 | #endregion
|
---|
[7989] | 185 |
|
---|
[8010] | 186 | #region Calculate test quality measures
|
---|
[8430] | 187 | var testHorizions = ProblemData.TestIndices.Select(r => Math.Min(horizon, ProblemData.TestPartition.End - r)).ToList();
|
---|
| 188 | IEnumerable<IEnumerable<double>> testTargetValues = ProblemData.TestIndices.Zip(testHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList();
|
---|
| 189 | IEnumerable<IEnumerable<double>> testEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList();
|
---|
| 190 | IEnumerable<double> testStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 191 | IEnumerable<IEnumerable<double>> testMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions);
|
---|
| 192 | IEnumerable<IEnumerable<double>> testAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions);
|
---|
| 193 | IEnumerable<IEnumerable<double>> testMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions);
|
---|
[7989] | 194 |
|
---|
[8010] | 195 | TestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
| 196 | TestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestDirectionalSymmetry : 0.0;
|
---|
| 197 | TestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
| 198 | TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestWeightedDirectionalSymmetry : 0.0;
|
---|
| 199 | TestTheilsUStatisticLast = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
|
---|
| 200 | TestTheilsUStatisticLast = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticLast : double.PositiveInfinity; ;
|
---|
| 201 | TestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
|
---|
| 202 | TestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMean : double.PositiveInfinity; ;
|
---|
| 203 | TestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState);
|
---|
| 204 | TestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMovingAverage : double.PositiveInfinity; ; ;
|
---|
[8430] | 205 | #endregion
|
---|
[6802] | 206 | }
|
---|
| 207 | }
|
---|
| 208 | }
|
---|