[6239] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7268] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6239] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Parameters;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | [Item("ClassificationEnsembleProblemData", "Represents an item containing all data defining a classification problem.")]
|
---|
| 32 | public class ClassificationEnsembleProblemData : ClassificationProblemData {
|
---|
| 33 |
|
---|
[6672] | 34 | public override bool IsTrainingSample(int index) {
|
---|
| 35 | return index >= 0 && index < Dataset.Rows &&
|
---|
| 36 | TrainingPartition.Start <= index && index < TrainingPartition.End;
|
---|
[6239] | 37 | }
|
---|
[6672] | 38 |
|
---|
| 39 | public override bool IsTestSample(int index) {
|
---|
| 40 | return index >= 0 && index < Dataset.Rows &&
|
---|
| 41 | TestPartition.Start <= index && index < TestPartition.End;
|
---|
[6239] | 42 | }
|
---|
| 43 |
|
---|
[6672] | 44 | private static readonly ClassificationEnsembleProblemData emptyProblemData;
|
---|
[7043] | 45 | public static new ClassificationEnsembleProblemData EmptyProblemData {
|
---|
[6666] | 46 | get { return emptyProblemData; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | static ClassificationEnsembleProblemData() {
|
---|
| 50 | var problemData = new ClassificationEnsembleProblemData();
|
---|
| 51 | problemData.Parameters.Clear();
|
---|
| 52 | problemData.Name = "Empty Classification ProblemData";
|
---|
| 53 | problemData.Description = "This ProblemData acts as place holder before the correct problem data is loaded.";
|
---|
| 54 | problemData.isEmpty = true;
|
---|
| 55 |
|
---|
| 56 | problemData.Parameters.Add(new FixedValueParameter<Dataset>(DatasetParameterName, "", new Dataset()));
|
---|
| 57 | problemData.Parameters.Add(new FixedValueParameter<ReadOnlyCheckedItemList<StringValue>>(InputVariablesParameterName, ""));
|
---|
| 58 | problemData.Parameters.Add(new FixedValueParameter<IntRange>(TrainingPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
|
---|
| 59 | problemData.Parameters.Add(new FixedValueParameter<IntRange>(TestPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
|
---|
| 60 | problemData.Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariableParameterName, new ItemSet<StringValue>()));
|
---|
| 61 | problemData.Parameters.Add(new FixedValueParameter<StringMatrix>(ClassNamesParameterName, "", new StringMatrix(0, 0).AsReadOnly()));
|
---|
| 62 | problemData.Parameters.Add(new FixedValueParameter<DoubleMatrix>(ClassificationPenaltiesParameterName, "", (DoubleMatrix)new DoubleMatrix(0, 0).AsReadOnly()));
|
---|
| 63 | emptyProblemData = problemData;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
[6239] | 66 | [StorableConstructor]
|
---|
| 67 | protected ClassificationEnsembleProblemData(bool deserializing) : base(deserializing) { }
|
---|
[6666] | 68 | protected ClassificationEnsembleProblemData(ClassificationEnsembleProblemData original, Cloner cloner) : base(original, cloner) { }
|
---|
| 69 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 70 | if (this == emptyProblemData) return emptyProblemData;
|
---|
| 71 | return new ClassificationEnsembleProblemData(this, cloner);
|
---|
[6239] | 72 | }
|
---|
| 73 |
|
---|
[6666] | 74 | public ClassificationEnsembleProblemData() : base() { }
|
---|
[6239] | 75 | public ClassificationEnsembleProblemData(IClassificationProblemData classificationProblemData)
|
---|
| 76 | : base(classificationProblemData.Dataset, classificationProblemData.AllowedInputVariables, classificationProblemData.TargetVariable) {
|
---|
| 77 | this.TrainingPartition.Start = classificationProblemData.TrainingPartition.Start;
|
---|
| 78 | this.TrainingPartition.End = classificationProblemData.TrainingPartition.End;
|
---|
| 79 | this.TestPartition.Start = classificationProblemData.TestPartition.Start;
|
---|
| 80 | this.TestPartition.End = classificationProblemData.TestPartition.End;
|
---|
| 81 | }
|
---|
[6666] | 82 |
|
---|
| 83 | public ClassificationEnsembleProblemData(Dataset dataset, IEnumerable<string> allowedInputVariables, string targetVariable)
|
---|
| 84 | : base(dataset, allowedInputVariables, targetVariable) {
|
---|
| 85 | }
|
---|
[6239] | 86 | }
|
---|
| 87 | }
|
---|