1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
34 | /// <summary>
|
---|
35 | /// An operator that analyzes the training best symbolic data analysis solution for single objective symbolic data analysis problems.
|
---|
36 | /// </summary>
|
---|
37 | [Item("SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for single objective symbolic data analysis problems.")]
|
---|
38 | [StorableClass]
|
---|
39 | public abstract class SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer<T> : SymbolicDataAnalysisSingleObjectiveAnalyzer
|
---|
40 | where T : class, ISymbolicDataAnalysisSolution {
|
---|
41 | private const string TrainingBestSolutionParameterName = "Best training solution";
|
---|
42 | private const string TrainingBestSolutionQualityParameterName = "Best training solution quality";
|
---|
43 |
|
---|
44 | #region parameter properties
|
---|
45 | public ILookupParameter<T> TrainingBestSolutionParameter {
|
---|
46 | get { return (ILookupParameter<T>)Parameters[TrainingBestSolutionParameterName]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<DoubleValue> TrainingBestSolutionQualityParameter {
|
---|
49 | get { return (ILookupParameter<DoubleValue>)Parameters[TrainingBestSolutionQualityParameterName]; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 | #region properties
|
---|
53 | public T TrainingBestSolution {
|
---|
54 | get { return TrainingBestSolutionParameter.ActualValue; }
|
---|
55 | set { TrainingBestSolutionParameter.ActualValue = value; }
|
---|
56 | }
|
---|
57 | public DoubleValue TrainingBestSolutionQuality {
|
---|
58 | get { return TrainingBestSolutionQualityParameter.ActualValue; }
|
---|
59 | set { TrainingBestSolutionQualityParameter.ActualValue = value; }
|
---|
60 | }
|
---|
61 | #endregion
|
---|
62 |
|
---|
63 | [StorableConstructor]
|
---|
64 | protected SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
65 | protected SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer<T> original, Cloner cloner) : base(original, cloner) { }
|
---|
66 | public SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer()
|
---|
67 | : base() {
|
---|
68 | Parameters.Add(new LookupParameter<T>(TrainingBestSolutionParameterName, "The training best symbolic data analyis solution."));
|
---|
69 | Parameters.Add(new LookupParameter<DoubleValue>(TrainingBestSolutionQualityParameterName, "The quality of the training best symbolic data analysis solution."));
|
---|
70 | }
|
---|
71 |
|
---|
72 | public override IOperation Apply() {
|
---|
73 | #region find best tree
|
---|
74 | double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
75 | ISymbolicExpressionTree bestTree = null;
|
---|
76 | ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
|
---|
77 | double[] quality = Quality.Select(x => x.Value).ToArray();
|
---|
78 | for (int i = 0; i < tree.Length; i++) {
|
---|
79 | if (IsBetter(quality[i], bestQuality, Maximization.Value)) {
|
---|
80 | bestQuality = quality[i];
|
---|
81 | bestTree = tree[i];
|
---|
82 | }
|
---|
83 | }
|
---|
84 | #endregion
|
---|
85 |
|
---|
86 | var results = ResultCollection;
|
---|
87 | if (bestTree != null && (TrainingBestSolutionQuality == null ||
|
---|
88 | IsBetter(bestQuality, TrainingBestSolutionQuality.Value, Maximization.Value))) {
|
---|
89 | TrainingBestSolution = CreateSolution(bestTree, bestQuality);
|
---|
90 | TrainingBestSolutionQuality = new DoubleValue(bestQuality);
|
---|
91 |
|
---|
92 | if (!results.ContainsKey(TrainingBestSolutionParameter.Name)) {
|
---|
93 | results.Add(new Result(TrainingBestSolutionParameter.Name, TrainingBestSolutionParameter.Description, TrainingBestSolution));
|
---|
94 | results.Add(new Result(TrainingBestSolutionQualityParameter.Name, TrainingBestSolutionQualityParameter.Description, TrainingBestSolutionQuality));
|
---|
95 | } else {
|
---|
96 | results[TrainingBestSolutionParameter.Name].Value = TrainingBestSolution;
|
---|
97 | results[TrainingBestSolutionQualityParameter.Name].Value = TrainingBestSolutionQuality;
|
---|
98 | }
|
---|
99 | }
|
---|
100 | return base.Apply();
|
---|
101 | }
|
---|
102 |
|
---|
103 | protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality);
|
---|
104 |
|
---|
105 | private bool IsBetter(double lhs, double rhs, bool maximization) {
|
---|
106 | if (maximization) return lhs > rhs;
|
---|
107 | else return lhs < rhs;
|
---|
108 | }
|
---|
109 | }
|
---|
110 | }
|
---|