1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a symbolic time-series prognosis model
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | [Item(Name = "Symbolic Time-Series Prognosis Model", Description = "Represents a symbolic time series prognosis model.")]
|
---|
36 | public class SymbolicTimeSeriesPrognosisModel : SymbolicRegressionModel, ISymbolicTimeSeriesPrognosisModel {
|
---|
37 |
|
---|
38 | public new ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter Interpreter {
|
---|
39 | get { return (ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter)base.Interpreter; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | protected SymbolicTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { }
|
---|
44 | protected SymbolicTimeSeriesPrognosisModel(SymbolicTimeSeriesPrognosisModel original, Cloner cloner) : base(original, cloner) { }
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
46 | return new SymbolicTimeSeriesPrognosisModel(this, cloner);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public SymbolicTimeSeriesPrognosisModel(ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue) : base(tree, interpreter, lowerLimit, upperLimit) { }
|
---|
50 |
|
---|
51 |
|
---|
52 |
|
---|
53 | public IEnumerable<IEnumerable<double>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
|
---|
54 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows, horizons);
|
---|
55 | return estimatedValues.Select(predictionPerRow => predictionPerRow.LimitToRange(LowerEstimationLimit, UpperEstimationLimit));
|
---|
56 | }
|
---|
57 |
|
---|
58 | public ISymbolicTimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
59 | return new SymbolicTimeSeriesPrognosisSolution(this, problemData);
|
---|
60 | }
|
---|
61 | ITimeSeriesPrognosisSolution ITimeSeriesPrognosisModel.CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
62 | return CreateTimeSeriesPrognosisSolution(problemData);
|
---|
63 | }
|
---|
64 |
|
---|
65 | //public static void Scale(SymbolicTimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData, IEnumerable<int> rows) {
|
---|
66 | // var dataset = problemData.Dataset;
|
---|
67 | // var targetVariable = problemData.TargetVariable;
|
---|
68 | // var estimatedValues = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset, rows);
|
---|
69 | // var boundedEstimatedValues = estimatedValues.LimitToRange(model.lowerEstimationLimit, model.upperEstimationLimit);
|
---|
70 | // var targetValues = problemData.Dataset.GetDoubleValues(targetVariable, rows);
|
---|
71 |
|
---|
72 | // double alpha, beta;
|
---|
73 | // OnlineCalculatorError error;
|
---|
74 | // OnlineLinearScalingParameterCalculator.Calculate(boundedEstimatedValues, targetValues, out alpha, out beta, out error);
|
---|
75 | // if (error != OnlineCalculatorError.None) return;
|
---|
76 |
|
---|
77 | // ConstantTreeNode alphaTreeNode = null;
|
---|
78 | // ConstantTreeNode betaTreeNode = null;
|
---|
79 | // // check if model has been scaled previously by analyzing the structure of the tree
|
---|
80 | // var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
81 | // if (startNode.GetSubtree(0).Symbol is Addition) {
|
---|
82 | // var addNode = startNode.GetSubtree(0);
|
---|
83 | // if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
|
---|
84 | // alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
85 | // var mulNode = addNode.GetSubtree(0);
|
---|
86 | // if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
87 | // betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
88 | // }
|
---|
89 | // }
|
---|
90 | // }
|
---|
91 | // // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
92 | // if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
93 | // betaTreeNode.Value *= beta;
|
---|
94 | // alphaTreeNode.Value *= beta;
|
---|
95 | // alphaTreeNode.Value += alpha;
|
---|
96 | // } else {
|
---|
97 | // var mainBranch = startNode.GetSubtree(0);
|
---|
98 | // startNode.RemoveSubtree(0);
|
---|
99 | // var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
|
---|
100 | // startNode.AddSubtree(scaledMainBranch);
|
---|
101 | // }
|
---|
102 | //}
|
---|
103 |
|
---|
104 | //private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
105 | // if (alpha.IsAlmost(0.0)) {
|
---|
106 | // return treeNode;
|
---|
107 | // } else {
|
---|
108 | // var addition = new Addition();
|
---|
109 | // var node = addition.CreateTreeNode();
|
---|
110 | // var alphaConst = MakeConstant(alpha);
|
---|
111 | // node.AddSubtree(treeNode);
|
---|
112 | // node.AddSubtree(alphaConst);
|
---|
113 | // return node;
|
---|
114 | // }
|
---|
115 | //}
|
---|
116 |
|
---|
117 | //private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
|
---|
118 | // if (beta.IsAlmost(1.0)) {
|
---|
119 | // return treeNode;
|
---|
120 | // } else {
|
---|
121 | // var multipliciation = new Multiplication();
|
---|
122 | // var node = multipliciation.CreateTreeNode();
|
---|
123 | // var betaConst = MakeConstant(beta);
|
---|
124 | // node.AddSubtree(treeNode);
|
---|
125 | // node.AddSubtree(betaConst);
|
---|
126 | // return node;
|
---|
127 | // }
|
---|
128 | //}
|
---|
129 |
|
---|
130 | //private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
131 | // var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
132 | // node.Value = c;
|
---|
133 | // return node;
|
---|
134 | //}
|
---|
135 | }
|
---|
136 | }
|
---|