1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
32 | /// <summary>
|
---|
33 | /// Represents a symbolic time-series prognosis model
|
---|
34 | /// </summary>
|
---|
35 | [StorableClass]
|
---|
36 | [Item(Name = "Symbolic Time-Series Prognosis Model", Description = "Represents a symbolic time series prognosis model.")]
|
---|
37 | public class SymbolicTimeSeriesPrognosisModel : NamedItem, ISymbolicTimeSeriesPrognosisModel {
|
---|
38 | public override Image ItemImage {
|
---|
39 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
40 | }
|
---|
41 | [Storable(DefaultValue = double.MinValue)]
|
---|
42 | private double lowerEstimationLimit;
|
---|
43 | [Storable(DefaultValue = double.MaxValue)]
|
---|
44 | private double upperEstimationLimit;
|
---|
45 |
|
---|
46 | #region properties
|
---|
47 |
|
---|
48 | [Storable]
|
---|
49 | private ISymbolicExpressionTree symbolicExpressionTree;
|
---|
50 | public ISymbolicExpressionTree SymbolicExpressionTree {
|
---|
51 | get { return symbolicExpressionTree; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | [Storable]
|
---|
55 | private ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter;
|
---|
56 | public ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter Interpreter {
|
---|
57 | get { return interpreter; }
|
---|
58 | }
|
---|
59 |
|
---|
60 | ISymbolicDataAnalysisExpressionTreeInterpreter ISymbolicDataAnalysisModel.Interpreter {
|
---|
61 | get { return (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | #endregion
|
---|
65 |
|
---|
66 | [Storable]
|
---|
67 | private string[] targetVariables;
|
---|
68 |
|
---|
69 |
|
---|
70 | [StorableConstructor]
|
---|
71 | protected SymbolicTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { }
|
---|
72 | protected SymbolicTimeSeriesPrognosisModel(SymbolicTimeSeriesPrognosisModel original, Cloner cloner)
|
---|
73 | : base(original, cloner) {
|
---|
74 | this.symbolicExpressionTree = cloner.Clone(original.symbolicExpressionTree);
|
---|
75 | this.interpreter = cloner.Clone(original.interpreter);
|
---|
76 | this.targetVariables = new string[original.targetVariables.Length];
|
---|
77 | Array.Copy(original.targetVariables, this.targetVariables, this.targetVariables.Length);
|
---|
78 | this.lowerEstimationLimit = original.lowerEstimationLimit;
|
---|
79 | this.upperEstimationLimit = original.upperEstimationLimit;
|
---|
80 | }
|
---|
81 | public SymbolicTimeSeriesPrognosisModel(ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, IEnumerable<string> targetVariables, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue)
|
---|
82 | : base() {
|
---|
83 | this.name = ItemName;
|
---|
84 | this.description = ItemDescription;
|
---|
85 | this.symbolicExpressionTree = tree;
|
---|
86 | this.interpreter = interpreter; this.targetVariables = targetVariables.ToArray();
|
---|
87 | this.lowerEstimationLimit = lowerLimit;
|
---|
88 | this.upperEstimationLimit = upperLimit;
|
---|
89 | }
|
---|
90 |
|
---|
91 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
92 | return new SymbolicTimeSeriesPrognosisModel(this, cloner);
|
---|
93 | }
|
---|
94 |
|
---|
95 | public IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, int horizon) {
|
---|
96 | var enumerator =
|
---|
97 | Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, targetVariables, rows, horizon).
|
---|
98 | GetEnumerator();
|
---|
99 | foreach (var r in rows) {
|
---|
100 | var l = new List<double[]>();
|
---|
101 | for (int h = 0; h < horizon; h++) {
|
---|
102 | double[] components = new double[targetVariables.Length];
|
---|
103 | for (int c = 0; c < components.Length; c++) {
|
---|
104 | enumerator.MoveNext();
|
---|
105 | components[c] = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, enumerator.Current));
|
---|
106 | }
|
---|
107 | l.Add(components);
|
---|
108 | }
|
---|
109 | yield return l;
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | public ISymbolicTimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
114 | return new SymbolicTimeSeriesPrognosisSolution(this, problemData);
|
---|
115 | }
|
---|
116 | ITimeSeriesPrognosisSolution ITimeSeriesPrognosisModel.CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
117 | return CreateTimeSeriesPrognosisSolution(problemData);
|
---|
118 | }
|
---|
119 |
|
---|
120 | public static void Scale(SymbolicTimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData) {
|
---|
121 | var dataset = problemData.Dataset;
|
---|
122 | var targetVariables = problemData.TargetVariables.ToArray();
|
---|
123 | var rows = problemData.TrainingIndizes;
|
---|
124 | var estimatedValuesEnumerator = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset,
|
---|
125 | targetVariables,
|
---|
126 | rows).GetEnumerator();
|
---|
127 | var scalingParameterCalculators =
|
---|
128 | problemData.TargetVariables.Select(v => new OnlineLinearScalingParameterCalculator()).ToArray();
|
---|
129 | var targetValuesEnumerator = problemData.Dataset.GetVectorEnumerable(targetVariables, rows).GetEnumerator();
|
---|
130 |
|
---|
131 | var more = targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext();
|
---|
132 | // foreach row
|
---|
133 | while (more) {
|
---|
134 | // foreach component
|
---|
135 | for (int i = 0; i < targetVariables.Length; i++) {
|
---|
136 | scalingParameterCalculators[i].Add(estimatedValuesEnumerator.Current, targetValuesEnumerator.Current);
|
---|
137 | more = estimatedValuesEnumerator.MoveNext() & targetValuesEnumerator.MoveNext();
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | for (int i = 0; i < targetVariables.Count(); i++) {
|
---|
142 | if (scalingParameterCalculators[i].ErrorState != OnlineCalculatorError.None) continue;
|
---|
143 | double alpha = scalingParameterCalculators[i].Alpha;
|
---|
144 | double beta = scalingParameterCalculators[i].Beta;
|
---|
145 | ConstantTreeNode alphaTreeNode = null;
|
---|
146 | ConstantTreeNode betaTreeNode = null;
|
---|
147 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
148 | var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
149 | if (startNode.GetSubtree(i).Symbol is Addition) {
|
---|
150 | var addNode = startNode.GetSubtree(i);
|
---|
151 | if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication &&
|
---|
152 | addNode.GetSubtree(1).Symbol is Constant) {
|
---|
153 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
154 | var mulNode = addNode.GetSubtree(0);
|
---|
155 | if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
156 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|
160 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
161 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
162 | betaTreeNode.Value *= beta;
|
---|
163 | alphaTreeNode.Value *= beta;
|
---|
164 | alphaTreeNode.Value += alpha;
|
---|
165 | } else {
|
---|
166 | var mainBranch = startNode.GetSubtree(i);
|
---|
167 | startNode.RemoveSubtree(i);
|
---|
168 | var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
|
---|
169 | startNode.InsertSubtree(i, scaledMainBranch);
|
---|
170 | }
|
---|
171 | } // foreach
|
---|
172 | }
|
---|
173 |
|
---|
174 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
175 | if (alpha.IsAlmost(0.0)) {
|
---|
176 | return treeNode;
|
---|
177 | } else {
|
---|
178 | var addition = new Addition();
|
---|
179 | var node = addition.CreateTreeNode();
|
---|
180 | var alphaConst = MakeConstant(alpha);
|
---|
181 | node.AddSubtree(treeNode);
|
---|
182 | node.AddSubtree(alphaConst);
|
---|
183 | return node;
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
|
---|
188 | if (beta.IsAlmost(1.0)) {
|
---|
189 | return treeNode;
|
---|
190 | } else {
|
---|
191 | var multipliciation = new Multiplication();
|
---|
192 | var node = multipliciation.CreateTreeNode();
|
---|
193 | var betaConst = MakeConstant(beta);
|
---|
194 | node.AddSubtree(treeNode);
|
---|
195 | node.AddSubtree(betaConst);
|
---|
196 | return node;
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
201 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
202 | node.Value = c;
|
---|
203 | return node;
|
---|
204 | }
|
---|
205 | }
|
---|
206 | }
|
---|