[6802] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7154] | 22 | using System;
|
---|
[6802] | 23 | using System.Collections.Generic;
|
---|
[7120] | 24 | using System.Drawing;
|
---|
[7100] | 25 | using System.Linq;
|
---|
[6802] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Represents a symbolic time-series prognosis model
|
---|
| 34 | /// </summary>
|
---|
| 35 | [StorableClass]
|
---|
| 36 | [Item(Name = "Symbolic Time-Series Prognosis Model", Description = "Represents a symbolic time series prognosis model.")]
|
---|
[7120] | 37 | public class SymbolicTimeSeriesPrognosisModel : NamedItem, ISymbolicTimeSeriesPrognosisModel {
|
---|
| 38 | public override Image ItemImage {
|
---|
| 39 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
[7100] | 40 | }
|
---|
[7183] | 41 | [Storable(DefaultValue = double.MinValue)]
|
---|
| 42 | private double lowerEstimationLimit;
|
---|
| 43 | [Storable(DefaultValue = double.MaxValue)]
|
---|
| 44 | private double upperEstimationLimit;
|
---|
[6802] | 45 |
|
---|
[7120] | 46 | #region properties
|
---|
| 47 |
|
---|
| 48 | [Storable]
|
---|
| 49 | private ISymbolicExpressionTree symbolicExpressionTree;
|
---|
| 50 | public ISymbolicExpressionTree SymbolicExpressionTree {
|
---|
| 51 | get { return symbolicExpressionTree; }
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | [Storable]
|
---|
| 55 | private ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter;
|
---|
| 56 | public ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter Interpreter {
|
---|
| 57 | get { return interpreter; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
[7129] | 60 | ISymbolicDataAnalysisExpressionTreeInterpreter ISymbolicDataAnalysisModel.Interpreter {
|
---|
| 61 | get { return (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[7120] | 64 | #endregion
|
---|
| 65 |
|
---|
| 66 | [Storable]
|
---|
| 67 | private string[] targetVariables;
|
---|
| 68 |
|
---|
| 69 |
|
---|
[6802] | 70 | [StorableConstructor]
|
---|
| 71 | protected SymbolicTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { }
|
---|
| 72 | protected SymbolicTimeSeriesPrognosisModel(SymbolicTimeSeriesPrognosisModel original, Cloner cloner)
|
---|
| 73 | : base(original, cloner) {
|
---|
[7120] | 74 | this.symbolicExpressionTree = cloner.Clone(original.symbolicExpressionTree);
|
---|
| 75 | this.interpreter = cloner.Clone(original.interpreter);
|
---|
[7154] | 76 | this.targetVariables = new string[original.targetVariables.Length];
|
---|
| 77 | Array.Copy(original.targetVariables, this.targetVariables, this.targetVariables.Length);
|
---|
[7183] | 78 | this.lowerEstimationLimit = original.lowerEstimationLimit;
|
---|
| 79 | this.upperEstimationLimit = original.upperEstimationLimit;
|
---|
[6802] | 80 | }
|
---|
[7183] | 81 | public SymbolicTimeSeriesPrognosisModel(ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, IEnumerable<string> targetVariables, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue)
|
---|
[7120] | 82 | : base() {
|
---|
| 83 | this.name = ItemName;
|
---|
| 84 | this.description = ItemDescription;
|
---|
| 85 | this.symbolicExpressionTree = tree;
|
---|
| 86 | this.interpreter = interpreter; this.targetVariables = targetVariables.ToArray();
|
---|
[7183] | 87 | this.lowerEstimationLimit = lowerLimit;
|
---|
| 88 | this.upperEstimationLimit = upperLimit;
|
---|
[6802] | 89 | }
|
---|
| 90 |
|
---|
| 91 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 92 | return new SymbolicTimeSeriesPrognosisModel(this, cloner);
|
---|
| 93 | }
|
---|
| 94 |
|
---|
[7100] | 95 | public IEnumerable<IEnumerable<IEnumerable<double>>> GetPrognosedValues(Dataset dataset, IEnumerable<int> rows, int horizon) {
|
---|
[7154] | 96 | var enumerator =
|
---|
| 97 | Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, targetVariables, rows, horizon).
|
---|
| 98 | GetEnumerator();
|
---|
| 99 | foreach (var r in rows) {
|
---|
| 100 | var l = new List<double[]>();
|
---|
| 101 | for (int h = 0; h < horizon; h++) {
|
---|
| 102 | double[] components = new double[targetVariables.Length];
|
---|
| 103 | for (int c = 0; c < components.Length; c++) {
|
---|
| 104 | enumerator.MoveNext();
|
---|
[7183] | 105 | components[c] = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, enumerator.Current));
|
---|
[7154] | 106 | }
|
---|
| 107 | l.Add(components);
|
---|
| 108 | }
|
---|
| 109 | yield return l;
|
---|
| 110 | }
|
---|
[6802] | 111 | }
|
---|
| 112 |
|
---|
| 113 | public ISymbolicTimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
| 114 | return new SymbolicTimeSeriesPrognosisSolution(this, problemData);
|
---|
| 115 | }
|
---|
| 116 | ITimeSeriesPrognosisSolution ITimeSeriesPrognosisModel.CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
| 117 | return CreateTimeSeriesPrognosisSolution(problemData);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | public static void Scale(SymbolicTimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData) {
|
---|
| 121 | var dataset = problemData.Dataset;
|
---|
[7154] | 122 | var targetVariables = problemData.TargetVariables.ToArray();
|
---|
[6802] | 123 | var rows = problemData.TrainingIndizes;
|
---|
[7154] | 124 | var estimatedValuesEnumerator = model.Interpreter.GetSymbolicExpressionTreeValues(model.SymbolicExpressionTree, dataset,
|
---|
| 125 | targetVariables,
|
---|
| 126 | rows).GetEnumerator();
|
---|
| 127 | var scalingParameterCalculators =
|
---|
| 128 | problemData.TargetVariables.Select(v => new OnlineLinearScalingParameterCalculator()).ToArray();
|
---|
| 129 | var targetValuesEnumerator = problemData.Dataset.GetVectorEnumerable(targetVariables, rows).GetEnumerator();
|
---|
[6802] | 130 |
|
---|
[7154] | 131 | var more = targetValuesEnumerator.MoveNext() & estimatedValuesEnumerator.MoveNext();
|
---|
| 132 | // foreach row
|
---|
| 133 | while (more) {
|
---|
| 134 | // foreach component
|
---|
| 135 | for (int i = 0; i < targetVariables.Length; i++) {
|
---|
| 136 | scalingParameterCalculators[i].Add(estimatedValuesEnumerator.Current, targetValuesEnumerator.Current);
|
---|
| 137 | more = estimatedValuesEnumerator.MoveNext() & targetValuesEnumerator.MoveNext();
|
---|
| 138 | }
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | for (int i = 0; i < targetVariables.Count(); i++) {
|
---|
| 142 | if (scalingParameterCalculators[i].ErrorState != OnlineCalculatorError.None) continue;
|
---|
| 143 | double alpha = scalingParameterCalculators[i].Alpha;
|
---|
| 144 | double beta = scalingParameterCalculators[i].Beta;
|
---|
[7100] | 145 | ConstantTreeNode alphaTreeNode = null;
|
---|
| 146 | ConstantTreeNode betaTreeNode = null;
|
---|
| 147 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
| 148 | var startNode = model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
| 149 | if (startNode.GetSubtree(i).Symbol is Addition) {
|
---|
| 150 | var addNode = startNode.GetSubtree(i);
|
---|
| 151 | if (addNode.SubtreeCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication &&
|
---|
| 152 | addNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 153 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 154 | var mulNode = addNode.GetSubtree(0);
|
---|
| 155 | if (mulNode.SubtreeCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 156 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 157 | }
|
---|
[6802] | 158 | }
|
---|
| 159 | }
|
---|
[7100] | 160 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
| 161 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
| 162 | betaTreeNode.Value *= beta;
|
---|
| 163 | alphaTreeNode.Value *= beta;
|
---|
| 164 | alphaTreeNode.Value += alpha;
|
---|
| 165 | } else {
|
---|
| 166 | var mainBranch = startNode.GetSubtree(i);
|
---|
| 167 | startNode.RemoveSubtree(i);
|
---|
| 168 | var scaledMainBranch = MakeSum(MakeProduct(mainBranch, beta), alpha);
|
---|
| 169 | startNode.InsertSubtree(i, scaledMainBranch);
|
---|
| 170 | }
|
---|
| 171 | } // foreach
|
---|
[6802] | 172 | }
|
---|
| 173 |
|
---|
| 174 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
| 175 | if (alpha.IsAlmost(0.0)) {
|
---|
| 176 | return treeNode;
|
---|
| 177 | } else {
|
---|
| 178 | var addition = new Addition();
|
---|
| 179 | var node = addition.CreateTreeNode();
|
---|
| 180 | var alphaConst = MakeConstant(alpha);
|
---|
| 181 | node.AddSubtree(treeNode);
|
---|
| 182 | node.AddSubtree(alphaConst);
|
---|
| 183 | return node;
|
---|
| 184 | }
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | private static ISymbolicExpressionTreeNode MakeProduct(ISymbolicExpressionTreeNode treeNode, double beta) {
|
---|
| 188 | if (beta.IsAlmost(1.0)) {
|
---|
| 189 | return treeNode;
|
---|
| 190 | } else {
|
---|
| 191 | var multipliciation = new Multiplication();
|
---|
| 192 | var node = multipliciation.CreateTreeNode();
|
---|
| 193 | var betaConst = MakeConstant(beta);
|
---|
| 194 | node.AddSubtree(treeNode);
|
---|
| 195 | node.AddSubtree(betaConst);
|
---|
| 196 | return node;
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
| 201 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 202 | node.Value = c;
|
---|
| 203 | return node;
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 | }
|
---|