Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.TimeSeries/HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis/3.4/SingleObjective/SymbolicTimeSeriesPrognosisSingleObjectiveProblem.cs @ 8464

Last change on this file since 8464 was 8430, checked in by mkommend, 12 years ago

#1081: Intermediate commit of trunk updates - interpreter changes must be redone.

File size: 6.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Parameters;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
29  [Item("Symbolic Time-Series Prognosis Problem (single objective)", "Represents a single objective symbolic time-series prognosis problem.")]
30  [StorableClass]
31  [Creatable("Problems")]
32  public class SymbolicTimeSeriesPrognosisSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<ITimeSeriesPrognosisProblemData, ISymbolicTimeSeriesPrognosisSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, ITimeSeriesPrognosisProblem {
33    private const double PunishmentFactor = 10;
34    private const int InitialMaximumTreeDepth = 8;
35    private const int InitialMaximumTreeLength = 25;
36    private const string EstimationLimitsParameterName = "EstimationLimits";
37    private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
38
39    #region parameter properties
40    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
41      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
42    }
43    #endregion
44    #region properties
45    public DoubleLimit EstimationLimits {
46      get { return EstimationLimitsParameter.Value; }
47    }
48    #endregion
49    [StorableConstructor]
50    protected SymbolicTimeSeriesPrognosisSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
51    protected SymbolicTimeSeriesPrognosisSingleObjectiveProblem(SymbolicTimeSeriesPrognosisSingleObjectiveProblem original, Cloner cloner) : base(original, cloner) { }
52    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicTimeSeriesPrognosisSingleObjectiveProblem(this, cloner); }
53
54    public SymbolicTimeSeriesPrognosisSingleObjectiveProblem()
55      : base(new TimeSeriesPrognosisProblemData(), new SymbolicTimeSeriesPrognosisSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
56      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
57      EstimationLimitsParameter.Hidden = true;
58
59      Maximization.Value = false;
60      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
61      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
62
63      var interpeter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter();
64      interpeter.TargetVariable = ProblemData.TargetVariable;
65      SymbolicExpressionTreeInterpreter = interpeter;
66
67      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
68      ConfigureGrammarSymbols();
69
70      InitializeOperators();
71      UpdateEstimationLimits();
72    }
73
74    private void ConfigureGrammarSymbols() {
75      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
76      if (grammar != null) grammar.ConfigureAsDefaultTimeSeriesPrognosisGrammar();
77    }
78
79    private void InitializeOperators() {
80      Operators.Add(new SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer());
81      Operators.Add(new SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer());
82      Operators.Add(new SymbolicTimeSeriesPrognosisSingleObjectiveOverfittingAnalyzer());
83      ParameterizeOperators();
84    }
85
86    private void UpdateEstimationLimits() {
87      if (ProblemData.TrainingIndices.Any()) {
88        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
89        var mean = targetValues.Average();
90        var range = targetValues.Max() - targetValues.Min();
91        EstimationLimits.Upper = mean + PunishmentFactor * range;
92        EstimationLimits.Lower = mean - PunishmentFactor * range;
93      } else {
94        EstimationLimits.Upper = double.MaxValue;
95        EstimationLimits.Lower = double.MinValue;
96      }
97    }
98
99    protected override void OnProblemDataChanged() {
100      base.OnProblemDataChanged();
101      var interpreter = SymbolicExpressionTreeInterpreter as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter;
102      if (interpreter != null) {
103        interpreter.TargetVariable = ProblemData.TargetVariable;
104      }
105      UpdateEstimationLimits();
106
107    }
108
109    protected override void ParameterizeOperators() {
110      base.ParameterizeOperators();
111      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
112        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
113        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
114          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
115        }
116        foreach (var op in operators.OfType<SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer>()) {
117          op.MaximizationParameter.ActualName = MaximizationParameter.Name;
118          op.ProblemDataParameter.ActualName = ProblemDataParameter.Name;
119          op.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName;
120          op.SymbolicDataAnalysisTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
121          op.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
122        }
123      }
124    }
125  }
126}
Note: See TracBrowser for help on using the repository browser.