1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
38 | /// <summary>
|
---|
39 | /// Linear time series prognosis data analysis algorithm.
|
---|
40 | /// </summary>
|
---|
41 | [Item("Linear Time Series Prognosis", "Linear time series prognosis data analysis algorithm (wrapper for ALGLIB).")]
|
---|
42 | [Creatable("Data Analysis")]
|
---|
43 | [StorableClass]
|
---|
44 | public sealed class LinearTimeSeriesPrognosis : FixedDataAnalysisAlgorithm<ITimeSeriesPrognosisProblem> {
|
---|
45 | private const string LinearTimeSeriesPrognosisModelResultName = "Linear time-series prognosis solution";
|
---|
46 | private const string MaximalLagParameterName = "MaximalLag";
|
---|
47 |
|
---|
48 | public IFixedValueParameter<IntValue> MaximalLagParameter {
|
---|
49 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximalLagParameterName]; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public int MaximalLag {
|
---|
53 | get { return MaximalLagParameter.Value.Value; }
|
---|
54 | set { MaximalLagParameter.Value.Value = value; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | [StorableConstructor]
|
---|
58 | private LinearTimeSeriesPrognosis(bool deserializing) : base(deserializing) { }
|
---|
59 | private LinearTimeSeriesPrognosis(LinearTimeSeriesPrognosis original, Cloner cloner)
|
---|
60 | : base(original, cloner) {
|
---|
61 | }
|
---|
62 | public LinearTimeSeriesPrognosis()
|
---|
63 | : base() {
|
---|
64 | Parameters.Add(new FixedValueParameter<IntValue>(MaximalLagParameterName,
|
---|
65 | "The maximal lag to use for auto-regressive terms.",
|
---|
66 | new IntValue(1)));
|
---|
67 | Problem = new TimeSeriesPrognosisProblem();
|
---|
68 | }
|
---|
69 | [StorableHook(HookType.AfterDeserialization)]
|
---|
70 | private void AfterDeserialization() { }
|
---|
71 |
|
---|
72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
73 | return new LinearTimeSeriesPrognosis(this, cloner);
|
---|
74 | }
|
---|
75 |
|
---|
76 | #region linear regression
|
---|
77 | protected override void Run() {
|
---|
78 | double[] rmsErrors, cvRmsErrors;
|
---|
79 | var solution = CreateLinearTimeSeriesPrognosisSolution(Problem.ProblemData, MaximalLag, out rmsErrors, out cvRmsErrors);
|
---|
80 | Results.Add(new Result(LinearTimeSeriesPrognosisModelResultName, "The linear time-series prognosis solution.", solution));
|
---|
81 | Results.Add(new Result("Root mean square errors", "The root of the mean of squared errors of the linear time-series prognosis solution on the training set.", new DoubleArray(rmsErrors)));
|
---|
82 | Results.Add(new Result("Estimated root mean square errors (cross-validation)", "The estimated root of the mean of squared errors of the linear time-series prognosis solution via cross validation.", new DoubleArray(cvRmsErrors)));
|
---|
83 | }
|
---|
84 |
|
---|
85 | public static ISymbolicTimeSeriesPrognosisSolution CreateLinearTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData, int maximalLag, out double[] rmsError, out double[] cvRmsError) {
|
---|
86 | Dataset dataset = problemData.Dataset;
|
---|
87 | string[] targetVariables = problemData.TargetVariables.ToArray();
|
---|
88 |
|
---|
89 | // prepare symbolic expression tree to hold the models for each target variable
|
---|
90 | ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
|
---|
91 | ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
|
---|
92 | tree.Root.AddSubtree(startNode);
|
---|
93 | int i = 0;
|
---|
94 | rmsError = new double[targetVariables.Length];
|
---|
95 | cvRmsError = new double[targetVariables.Length];
|
---|
96 | foreach (var targetVariable in targetVariables) {
|
---|
97 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
|
---|
98 | IEnumerable<int> rows = problemData.TrainingIndizes;
|
---|
99 | IEnumerable<int> lags = Enumerable.Range(1, maximalLag);
|
---|
100 | double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,
|
---|
101 | allowedInputVariables.Concat(new string[] { targetVariable }),
|
---|
102 | rows, lags);
|
---|
103 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
104 | throw new NotSupportedException(
|
---|
105 | "Linear time-series prognosis does not support NaN or infinity values in the input dataset.");
|
---|
106 |
|
---|
107 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
108 | alglib.lrreport ar = new alglib.lrreport();
|
---|
109 | int nRows = inputMatrix.GetLength(0);
|
---|
110 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
111 | double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
|
---|
112 |
|
---|
113 | int retVal = 1;
|
---|
114 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
115 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear time series prognosis solution");
|
---|
116 | rmsError[i] = ar.rmserror;
|
---|
117 | cvRmsError[i] = ar.cvrmserror;
|
---|
118 |
|
---|
119 | alglib.lrunpack(lm, out coefficients, out nFeatures);
|
---|
120 |
|
---|
121 | ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
|
---|
122 |
|
---|
123 | int col = 0;
|
---|
124 | foreach (string column in allowedInputVariables) {
|
---|
125 | foreach (int lag in lags) {
|
---|
126 | LaggedVariableTreeNode vNode =
|
---|
127 | (LaggedVariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.LaggedVariable().CreateTreeNode();
|
---|
128 | vNode.VariableName = column;
|
---|
129 | vNode.Weight = coefficients[col];
|
---|
130 | vNode.Lag = -lag;
|
---|
131 | addition.AddSubtree(vNode);
|
---|
132 | col++;
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
|
---|
137 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
138 | addition.AddSubtree(cNode);
|
---|
139 |
|
---|
140 | startNode.AddSubtree(addition);
|
---|
141 | i++;
|
---|
142 | }
|
---|
143 |
|
---|
144 | SymbolicTimeSeriesPrognosisSolution solution = new SymbolicTimeSeriesPrognosisSolution(new SymbolicTimeSeriesPrognosisModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData.TargetVariables.ToArray()), (ITimeSeriesPrognosisProblemData)problemData.Clone());
|
---|
145 | solution.Model.Name = "Linear Time-Series Prognosis Model";
|
---|
146 | return solution;
|
---|
147 | }
|
---|
148 | #endregion
|
---|
149 | }
|
---|
150 | }
|
---|