1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Problems.DataAnalysis;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
27 | public static class AlglibUtil {
|
---|
28 | public static double[,] PrepareInputMatrix(Dataset dataset, IEnumerable<string> variables, IEnumerable<int> rows) {
|
---|
29 | return PrepareInputMatrix(dataset, variables, rows, new int[] { 0 });
|
---|
30 | }
|
---|
31 |
|
---|
32 | public static double[,] PrepareInputMatrix(Dataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, IEnumerable<int> lags) {
|
---|
33 | int maxLag = lags.Max();
|
---|
34 |
|
---|
35 | // drop last variable (target variable)
|
---|
36 | List<string> inputVariablesList = variables
|
---|
37 | .Reverse()
|
---|
38 | .Skip(1)
|
---|
39 | .Reverse()
|
---|
40 | .ToList();
|
---|
41 | string targetVariable = variables.Last();
|
---|
42 | List<int> rowsList = rows.ToList();
|
---|
43 | int nRows = rowsList.Count - maxLag;
|
---|
44 | double[,] matrix = new double[nRows, inputVariablesList.Count * lags.Count() + 1];
|
---|
45 |
|
---|
46 | int col = 0;
|
---|
47 | int row = 0;
|
---|
48 | // input variables
|
---|
49 | foreach (int lag in lags) {
|
---|
50 | foreach (string column in inputVariablesList) {
|
---|
51 | var values = dataset.GetDoubleValues(column, rows.Select(x => x - lag).Take(nRows));
|
---|
52 | row = 0;
|
---|
53 | foreach (var value in values) {
|
---|
54 | if (row >= 0) {
|
---|
55 | matrix[row, col] = value;
|
---|
56 | }
|
---|
57 | row++;
|
---|
58 | }
|
---|
59 | col++;
|
---|
60 | }
|
---|
61 | }
|
---|
62 | // target variable
|
---|
63 | row = 0;
|
---|
64 | foreach (var value in dataset.GetDoubleValues(targetVariable, rows).Take(nRows)) {
|
---|
65 | matrix[row, col] = value;
|
---|
66 | row++;
|
---|
67 | }
|
---|
68 | return matrix;
|
---|
69 | }
|
---|
70 | }
|
---|
71 | }
|
---|